
Complete and Practical
Universal Instruction Selection

Gabriel Hjort Blindell1,2, Mats Carlsson2,
Roberto Castañeda Lozano2,1, and Christian Schulte1,2

1 School of ICT, KTH Royal Institute of Technology, Sweden
2 RISE SICS, Sweden

CASES 2017, October 16

This research is supported by the
Swedish Research Council (VR 621-2011-6229) and LM Ericsson AB.



Inside a Typical Compiler

source
code frontend optimizer backend

assembly
code

IR
IR

register
allocator

instruction
selector

instruction
scheduler

2



Graph-based Instruction Selection

int f(int a) {
int b = a * 2;
int c = a * 4;
return b + c;

}

ret

+

∗ ∗

a 2 a 4

matches

data-flow graph

mulacc

∗

+

pattern graph

Problem: Select matches
such that data-flow graph is

(optimally) covered
(NP-complete in general)

3



State of the Art
Selection is greedy and local to basic blocks
Graphs capture data flow only
Operations remain fixed to a given block
(lacks global code motion)

Observed:
Global code motion interacts with selection of complex
instructions
Capturing interaction requires non-greedy approach

Consequence:
Failure to exploit complex instructions of modern
processors in embedded systems
Selection of complex instruction with control flow using
handwritten, ad-hoc routines

4



Talk Overview

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

5



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

6



Program Example

void satadd(int* A,
int* B,
int* C)

{
int i = 0;
while (i < N) {
int c = A[i] + B[i];
if (MAX < c)
c = MAX;

C[i] = c;
i++;

}
}

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1

bb2

bb3

bb4 bb5

7



Instruction Examples

satadd

add4

Problems:
Incorporates control flow
Extends across multiple

blocks

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1

bb2

bb3

bb4 bb5

8



Instruction Examples

satadd
add4

Problems:
Additions must be moved

to same block (requires global
code motion)

Depending on hardware,
may incur additional copy
overhead

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
(t2, t3, t4, i) = ...
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX

store t4, c

bb1

bb2

bb3

bb4 bb5

9



Universal Instruction Selection (UIS) [1]
Handles both control and data flow

▸ Enables complex instructions to be captured as
pattern graphs

Integrates global instruction selection
(selects instructions for entire function)
with global code motion

▸ Facilitates selection of complex instructions

Takes data-copying overhead into account
▸ Prevents greedy selection of SIMD instructions

Expressed as a constraint model
▸ Potentially optimal w.r.t. the model
▸ Allows time to be traded for quality

[1] G. Hjort Blindell, R. Castañeda Lozano, M. Carlsson, and C. Schulte. “Modeling
Universal Instruction Selection”. In: Proceedings of CP’15. Springer, 2015, pp.
609–626.

10



Our Approach Is a Complement to Traditional
Methods

During development:
Quick compilation times essential
Code quality less important

Before deployment:
Code quality essential
Allow for long compilation times

11



Approach

graph
builder

pattern set
builder

matcher modeler solver
code

emitter

function

processor
instructions

universal function graph

pattern set

matches constraint
model

solution code

12



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

13



Constraint Programming

Combinatorial optimization method
▸ First model the problem, then solve the model

Problems modeled as constraint models
▸ Variables – decisions to be made?

x,y,z ∈ D
▸ Constraints – what constitute a solution?

x + y < z
▸ Objective function – what is the best solution?

maximize x
Orthogonal to the variables and constraints

▸ Can be extended (compositional)

Constraint models solved by interleaving
▸ Propagation – remove values in conflict with constraint
▸ Search – try and backtrack

14



Example: Sudoku

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79 variable

Initially:
x79 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

15



Row Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79x71 x73 x74 x75 x76

Propagate alldiff (x71,6,x73,x74,x75,x76,2,8,x79)
x79 ∈ {1, 3, 4, 5, 7, 9}

16



Column Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x19

x29

x39

Propagate alldiff (x19,x29,x39,3,1,6,x79,5,9)
x79 ∈ { 4, 7 }

17



Block Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x87 x88

x97

Propagate alldiff (2,8,x79,x87,x88,5,x97,7,9)
x79 ∈ { 4 }

18



After Propagation

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

4

x79 = 4

19



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

20



Representation

Combination of two graphs:
Extended SSA graph
Extended control-flow graph

21



Static Single Assignment (SSA) Form

Each variable must be
defined exactly once
Use ϕ-functions when
definition depends on
control flow
Used in virtually all
modern compilers

x1 = . . .

x2 = x1 + 1 x3 = x1 - 1

x4 = ϕ(x2:B, x3:C)

A

B

D

C

22



Example Function

int fact(int n) {
int f = 1;
while (n > 1) {
f = f * n;
n--;

}
return f;

}

int fact(int n1) {
entry:
int f1 = 1;

head:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
bool b = n2 <= 1;
if b goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

In C In SSA form

23



Goal: Connect The Graphs

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

24



Extend the Control-Flow Graph

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

25



Extend the SSA Graph

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

26



Add Missing Data-Flow Edges

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

27



Goal: Prevent Moves That Break Semantics

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

28



Such Moves Concern Data Used/Defined By ϕ’s

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

29



Definition Edges Prevent Moves

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

30



Universal Function (UF) Graph

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

31



Memory Operations and Function Calls
(Not in [1])

May implicitly depend on each other (through
external state)
Moving to another block may break program semantics

32



Example

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block

33



Capture Implicit Deps Via State Nodes

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block

34



Data-Flow Edge Prevents “Upward” Moves

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block

35



Definition Edge Prevents “Downward” Moves

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block

36



Instruction Representation

Apply same construction method as for UF graphs
▸ Enables complex instructions to be captured as pattern

graphs
▸ Example: satadd (has both control and data flow)

T
F

entry

c.br clamp

br

end

s

+

t

d1

ϕ<

MAX

d3

37



Other Features (Not in [1])

Insertion of additional jump instructions when necessary
▸ Otherwise leads to model with no solutions

Reuse of copied values
▸ Leads to more efficient code

Prevention of cyclic data dependencies
▸ Otherwise leads to incorrect code

38



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

39



Variables

Which matches to select?
In which blocks to place selected matches?
In which locations to make values available?
Which copied value to use?
In what order to place blocks?

40



Constraints

Function:
UF graph must be covered (graph partitioning)
Values and states must be defined before use
Placements restricted by definition edges
. . .

Processor:
Values must be in compatible locations
Fall-through conditions must be fulfilled

41



Objective Function

Minimize execution time
▸ Typical implementation:

∑
m∈M

sel[m] × cost(m) × freq(blockOf (m))

▸ Execution frequencies computed statically (by LLVM)
▸ Apply refined implementation to increase propagation

[minimize code size, . . .]

42



Techniques to Improve Solving

Implied and dominance breaking constraints
Cost bounding
Presolving

43



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

44



Setup
Randomly selected 20 functions from MEDIABENCH
using k-means clustering

▸ Medium-size functions (50–200 LLVM operations)
▸ No scalar or floating-point operations

Chose HEXAGON 5 as target
▸ Rich instruction set
▸ Used in many embedded systems

Found matches using VF2 [3]
▸ Pattern graphs can be arbitrarily complex

Modeled using MINIZINC

Solved using CHUFFED

Timed out after 10 minutes
▸ No improvements observed after ∼5 minutes

[3] Cordella et al. “An Improved Algorithm for Matching Large Graphs”. In: Proceedings
of GbRPR’01, pp. 149–159. Springer, 2001.

45



Our Approach vs LLVM 3.8

0%

5%

10%

15%

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_TexImage3DEX.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

:

: :

:

:

:

:

Compared: estimated speedup
Baseline: solutions produced by LLVM
Dots on bars indicate timeouts
Geometric mean improvement: 2.5%
Speedups due to global code motion

▸ move loading of constants to blocks with lower exec. freq.
▸ selection of auto-increment memory instruction

and block ordering
▸ better sequence led to fewer jump instructions

46



Value Reuse vs Without

0%

10%

20%

30%

40%

50%

60%

70%

alloc_name_is_s.

alloc_save_spac.

checksum

debug_dump_byte.

gl_EnableClient.

gl_TexImage3DEX.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gp_enumerate_fi.

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

:

:

:

: :

Compared: estimated speedup
Baseline: solutions produced without value reuse
Dots on bars indicate timeouts
Geometric mean improvement: 5.4%
Better due to less constant reloading

▸ crucial in initialization routines

47



Refined vs Naive Objective Function

0%

10%

20%

30%

40%

50%

60%

70%

1 s 10 s 100 s 1000 s

naive objective function

refined objective function

Compared: cumulative number of optimality proofs
Refined objective function is essential for scalability

48



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

49



Future Work

Address model limitations
▸ Lacks recomputation – relax exact coverage

Extend toolchain to produce executable code
▸ Engineering task

Integrate instruction scheduling and register allocation [4]
▸ Code generation tasks interact with one another –

feasible because constraint models are compositional

Make available on Github as part of Unison
▸ https://github.com/unison-code/unison

[4] Castañeda Lozano et al. “Combinatorial Spill Code Optimization and Ultimate
Coalescing”. In: Proceedings of LCTES’14, pp. 23–32. ACM, 2014.

50

https://github.com/unison-code/unison


Conclusions
Made UIS complete by:

▸ extending it to handle memory operations and
function calls

▸ introducing methods to insert jump instructions where
necessary and forbid cyclic data dependencies

Made UIS practical by:
▸ extending constraint model with value reuse to improve

code quality
▸ introducing solving techniques that increase scalability

and robustness
▸ demonstrating approach to be competitive with LLVM for

up to medium-sized functions

Showed that combinatorial optimization for instruction
selection is well-suited to exploit modern processors in
embedded systems

51



Outline

1. Introduction

2. A Motivating Example

3. Constraint Programming

4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

8. Extra Material

52



Constraints: Global Instruction Selection

Every operation must be covered by exactly one
selected match:

omatch[o] = m⇔ sel[m],∀o ∈ O,∀m ∈Mo (1)

Every datum must be defined by exactly one selected
match:

dmatch[d] = m⇔ sel[m],∀d ∈ D,∀m ∈Md (2)

53



Constraints: Global Code Motion

Operations covered by the same match must be placed
in the same block:

sel[m]⇒ oplace[o1] = oplace[o2],
∀m ∈M,∀o1, o2 ∈ covers(m) (3)

Matches with an entry block must be placed in the entry
block:

sel[m]⇒ oplace[o] = b,
∀m ∈M,∀o ∈ covers(m),∀b ∈ entry(m) (4)

Data must be defined before use:
dplace[d] ∈ dom(oplace[o]),

∀m ∈Mϕ,∀d ∈ uses(m),∀o ∈ covers(m) (5)

54



Constraints: Global Code Motion

Restrictions by the definition edges must be enforced:

dplace[d] = b,∀{d, b} ∈ DE (6)

Data must be defined in either block wherein the match
is placed or in a spanned block:

sel[m]⇒ dplace[alt[p]] ∈ {oplace[o]} ∪ spans(m),
∀m ∈M,∀p ∈ defines(m),∀o ∈ covers(m) (7)

No data must be placed in a consumed block:
sel[m]⇒ oplace[o] ≠ b,

∀o ∈ O,∀m ∈M,∀b ∈ consumes(m) (8)

55



Constraints: Inactive Data

Data defined by a kill match must be inactive:
sel[m]⇔ inactive[alt[p]],
∀m ∈M×,∀p ∈ defines(m) (9)

Data used by non-kill match must be active:
sel[m]⇒ ¬inactive[alt[p]],
∀m ∈M×,∀p ∈ uses(m) (10)

56



Constraints: Data Copying

Data locations used and defined by matches must be
compatible:

sel[m]⇒ loc[alt[p]] ∈ stores(m,p),
∀m ∈M,∀p ∈ P s.t. stores(m,p) ≠ ∅ (11)

Intermediate values must not be reused by other
matches:

sel[m]⇒ loc[alt[p]] = lnull,
∀m ∈M,∀p ∈ intvalues(m) (12)

57



Constraints: Block Ordering

Blocks must be placed in a sequence:

circuit (∪b∈B{succ[b]}) (13)

succ[entry(m)] = b ∨
(succ[succ[entry(m)]] = b ∧ empty(succ[entry(m)])),

∀⟨m⟩b ∈ J,
(14)

where

empty(b) ≡ oplace[o] ≠ b ∨ omatch[o] ∈M�,∀o ∈ O

58



Constraints: Cyclic Data Dependencies

Combinations leading to cyclic data dependencies must
be forbidden:

∑
m∈f

sel[m] < ∣f ∣,∀f ∈ F (15)

59



Refined Objective Function

Construct cost matrix:

C =
⎡⎢⎢⎢⎢⎢⎣
⟨o,m, b, freq(b) × cost(m, o)⟩

m ∈M,
o ∈ covers(m),

b ∈ B

⎤⎥⎥⎥⎥⎥⎦
(16)

Restrict the cost for each operation:
table (⟨o,omatch[o],oplace[o],ocost[o]⟩,C) ,

∀o ∈ O (17)

Compute total cost:

cost =∑
o∈O

ocost[o] (18)

60



Cost Bounding

Bound total cost:

Crelaxed ≤ cost < Cllvm (19)

61



Copy Extension

v1

cp

v2

v

When locations for v1 and v2 can be the same,
select special null-copy pattern with zero cost
Otherwise select appropriate copy instruction

62



May Lead to Redundant Copies

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value

63



Alternative Values . . .

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value

64



. . . Enable Value Reuse

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value

65



Case Requiring Additional Jump Insertion

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

bnz falls to next instruction if cond = F

66



As Is: No Valid Order

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

67



Requires Additional Jump Instruction

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

68



Extend Pattern Set With Dual-Target Branch
Patterns

For each pattern with fall-through condition:

T F
c.br

fall-through

A

B C

Emit: Cost:
bnz cond, B 1

T F
c.br

A

B C

Emit: Cost:
bnz cond, B 1 + cost(br)
br C

69



Example at Risk of Cyclic Data Dependency

. . .
p2 = p1 + 4
store q1, p2
q2 = q1 + 4
store p1, q2

q1

+

q2

st

+

p1

p2

st

4

m1 m2

70



Forbidding Cyclic Data Dependencies

q1

+

q2

st

+

p1

p2

st

4

m1 m2

m1 m2

dependency
graph

For each cycle in dependency graph, not all matches
may be selected
Similar to method used by Ebner et al. [2]

[2] Ebner et al. “Generalized Instruction Selection Using SSA-Graphs.” In: Proceedings
of LCTES’08, pp. 31–40. ACM, 2008.

71


