Complete and Practical
Universal Instruction Selection
Gabriel Hjort Blindell'-?, Mats Carlsson?,
Roberto Castafieda Lozano?', and Christian Schulte’+

" School of ICT, KTH Royal Institute of Technology, Sweden
2 RISE SICS, Sweden

CASES 2017, October 16

This research is supported by the
Swedish Research Council (VR 621-2011-6229) and LM Ericsson AB.

Inside a Typical Compiler

source
code

IR . . assembl
frontend optimizer — backend < y
- IR N code
p N
e ~
- ’ N
rd 7’ ~
. 2 N
7’ ’ 4 S ~ N
instruction register instruction
—> —>
selector allocator scheduler

Graph-based Instruction Selection

int f(int a) {
int b = a * 2;
int ¢ = a * 4;
return b + c;

mulacc

|

o

pattern graph

Problem: Select matches
such that data-flow graph is
data-flow graph (optimally) covered
(NP-complete in general)

State of the Art

m Selection is greedy and local to basic blocks
= Graphs capture data flow only

m Operations remain fixed to a given block
(lacks global code motion)

Observed:

= Global code motion interacts with selection of complex
instructions

m Capturing interaction requires non-greedy approach

Consequence:

= Failure to exploit complex instructions of modern
processors in embedded systems

= Selection of complex instruction with control flow using
handwritten, ad-hoc routines

Talk Overview

1. Introduction

2. A Motivating Example
3. Constraint Programming
4. Representations

5. Constraint Model

6. Experiments

7. Future Work and Conclusions

Outline

2. A Motivating Example

Program Example

void satadd(int* A

int* B,
int* C)
{
int i = 0;
while (i < N) {
int ¢ = A[i] + B[i];
if (MAX < ©)
= MAX;
C[i] = c;
i++;
3
}

bblli = @l

bb2
T
bb3 T
ti1 =1 % 4
t, = A+ t1; t3 =B + t;
a = load t;; b = load t3
c=a+b
if MAX < c
e/ N\
1 MAX t4:C+t1
\ store t4, C
i=1+1

Instruction Examples

bb1[i = 0]
bb2
ifi<yn —F—
m satadd
bb3 T
t; =1 % 4
t, = A+ t1; t3 =B + t;
Problems: a = load t;; b = load t3
m |ncorporates control flow c=a+b
. if MAX < c
m Extends across multiple

blocks / F\
bb4 bb5

.CZMAX|_)t4:C+t1
store t4, C

i=1+1

Instruction Examples

bb1[i = 0]
bb2
ifi<yN —F—
= satadd -
- bb3
t; =1 % 4
Problems: a = load t;; b = load t3
= Additions must be moved c=a+bh
. if MAX < c
to same block (requires global

code motion) - / \ b

m Depending on hardware, [c - 1AX
may incur additional copy ' store t4, c
overhead

Universal Instruction Selection (UIS) [1]

= Handles both control and data flow
» Enables complex instructions to be captured as
pattern graphs
m |ntegrates global instruction selection
(selects instructions for entire function)
with global code motion
» Facilitates selection of complex instructions
m Takes data-copying overhead into account
» Prevents greedy selection of SIMD instructions
m Expressed as a constraint model

» Potentially optimal w.r.t. the model
» Allows time to be traded for quality

[1] G. Hjort Blindell, R. Castafieda Lozano, M. Carlsson, and C. Schulte. “Modeling
Universal Instruction Selection”. In: Proceedings of CP’15. Springer, 2015, pp.
609-626.

Our Approach Is a Complement to Traditional
Methods

During development:
= Quick compilation times essential
m Code quality less important
Before deployment:
m Code quality essential
= Allow for long compilation times

Approach

processor
instructions

function

pattern set
builder

pattern set

matches constraint solution
matcher modeler solver
model

code
emitter

J

graph
builder

universal function graph

code

Outline

3. Constraint Programming

Constraint Programming

= Combinatorial optimization method

» First model the problem, then solve the model
m Problems modeled as constraint models

» Variables — decisions to be made?

X,y,z€D

» Constraints — what constitute a solution?
X+y<z

» Objective function — what is the best solution?
maximize x

Orthogonal to the variables and constraints
» Can be extended (compositional)

m Constraint models solved by interleaving

» Propagation — remove values in conflict with constraint
» Search — try and backtrack

Example: Sudoku

3 7
1195
9|8 6
8 6 3
4 8 3 1
7 2 6
6 2|8 .variable
4(11]9 5
8 719
Initially:

x79 € {1,2,3,4,5,6,7,8,9}

Row Constraint

3
1
6
X71| 6 [X73|X74|X75(X76| 2 | 8 .
5
9

8 7

Propagate alldiff (x71,6,X73, X74, X75, X76, 2, 8, X79)
xpp€{1, 3,45 7, 9}

Column Constraint

513 7 X19
1195 X29

918 6 |X39

8 6 3
4 8 3 1
7 2 6
6 2| 8 |
41119 5

8 719

Propagate alldiff (x19, X29, X39, 3, 1,6, X79,5,9)
Xyg € { 4, 7 }

Block Constraint

3 7
1195
918 6
8 6
4 8 3
7 2

411 |9 |Xs7|Xss
8 X97| 7

3
1
6

6 2| 8 x|
5
9

Propagate alldzﬁ‘(Z, 87 X79, Xg7, X88, 5, Xo7, 77 9)
Xyg € { 4 }

After Propagation

8 6 3
4 8| |3 1
7 2 6
2|8 4]
419 5
8 719

Outline

4. Representations

20

Representation

Combination of two graphs:
m Extended SSA graph
= Extended control-flow graph

21

Static Single Assignment (SSA) Form

m Each variable must be

defined exactly once i

= Use p-functions when
defiPitif)fT depends on |BxZ T 1C|
control flow

m Used in virtually all Dx4 = <p(x2:B<C) |

modern compilers

22

Example Function

int fact(int n) {
int £ = 1;
while (n > 1) {
f = f * n;
n--;
}

return f;

InC

int fact(int n;) {

entry:
int f1 = 1;

head:
int f, = ¢(fi:entry, f3:body);
int n; = ¢p(n;:entry, ns:body);
bool b = n, <= 1;
if b goto end;

body:
int f3 = £, * ny;
int n; = n, - 1;
goto head;

end:
return f£f,;

In SSA form

23

Goal: Connect The Graphs

control-flow graph

SSA graph

24

Extend the Control-Flow Graph

block node

control
node

control-flow graph SSA graph

25

Extend the SSA Graph

block node

value node
control

control-flow graph SSA graph

26

Add Missing Data-Flow Edges

block node

value node

control

control-flow graph SSA graph

27

Goal: Prevent Moves That Break Semantics

block node

value node

control

control-flow graph SSA graph

28

Such Moves Concern Data Used/Defined By ¢’s

block node

value node

control

control-flow graph SSA graph

29

Definition Edges Prevent Moves

block node

value node

control
node
definition edge

control-flow graph SSA graph

30

Universal Function (UF) Graph

block node

control
node

control-flow graph SSA graph

31

Memory Operations and Function Calls
(Not in [1])

m May implicitly depend on each other (through
external state)

m Moving to another block may break program semantics

32

Example

block:
store p,
call foo,
store p,

p

p e

33

Capture Implicit Deps Via State Nodes

block:
gfore P, ...
call foo, p @ @ @
store p, ...

34

Data-Flow Edge Prevents “Upward” Moves

block:
gfore P, ...
call foo, p @ @ @
store p, ...

35

Definition Edge Prevents “Downward” Moves

block:

store p, ...
call foo, p
store p, ...

36

Instruction Representation

m Apply same construction method as for UF graphs
» Enables complex instructions to be captured as pattern
graphs
» Example: satadd (has both control and data flow)

37

Other Features (Not in [1])

m |nsertion of additional jump instructions when necessary
» Otherwise leads to model with no solutions

m Reuse of copied values
» Leads to more efficient code

m Prevention of cyclic data dependencies
» Otherwise leads to incorrect code

38

Outline

5. Constraint Model

39

Variables

= Which matches to select?

= |In which blocks to place selected matches?
m In which locations to make values available?
= Which copied value to use?

= In what order to place blocks?

40

Constraints

Function:
m UF graph must be covered (graph partitioning)
® Values and states must be defined before use
m Placements restricted by definition edges
..

Processor:
m Values must be in compatible locations
m Fall-through conditions must be fulfilled

41

Objective Function

= Minimize execution time
» Typical implementation:
> sel[m] x cost(m) x freq(blockOf (m))

meM
» Execution frequencies computed statically (by LLVM)

» Apply refined implementation to increase propagation
= [minimize code size, .. .]

42

Techniques to Improve Solving

® Implied and dominance breaking constraints
m Cost bounding
= Presolving

43

Outline

6. Experiments

44

Setup

(3]

Randomly selected 20 functions from MEDIABENCH
using k-means clustering

» Medium-size functions (50-200 LLVM operations)

» No scalar or floating-point operations
Chose HEXAGON 5 as target

» Rich instruction set
» Used in many embedded systems

Found matches using VF2 [3]
» Pattern graphs can be arbitrarily complex
Modeled using MINIZINC
Solved using CHUFFED
Timed out after 10 minutes
» No improvements observed after ~5 minutes

Cordella et al. “An Improved Algorithm for Matching Large Graphs”. In: Proceedings
of GbRPR’01, pp. 149—159. Springer, 2001.

45

Our Approach vs LLVM 3.8

15%

0%

Q , by, Ca, e,
1%\0 log Mg Pecy, by, L

S,

e \J,CC\

Compared: estimated speedup

Baseline: solutions produced by LLVM

Dots on bars indicate timeouts

Geometric mean improvement: 2.5%

Speedups due to global code motion
» move loading of constants to blocks with lower exec. freq.
» selection of auto-increment memory instruction

and block ordering
» better sequence led to fewer jump instructions

46

Value Reuse vs Without

m Compared: estimated speedup

m Baseline: solutions produced without value reuse
m Dots on bars indicate timeouts

m Geometric mean improvement: 5.4%

m Better due to less constant reloading

» crucial in initialization routines

47

Refined vs Naive Objective Function

70%

60% -
50% o

40%
30% d
20% =

10% | _——md

/ naive objective function

0%

1s 10s 100s 1000s

m Compared: cumulative number of optimality proofs
= Refined objective function is essential for scalability

Outline

7. Future Work and Conclusions

49

Future Work

4]

Address model limitations
» Lacks recomputation — relax exact coverage
Extend toolchain to produce executable code
» Engineering task
Integrate instruction scheduling and register allocation [4]

» Code generation tasks interact with one another —
feasible because constraint models are compositional

Make available on Github as part of Unison
» https://github.com/unison-code/unison

Castafneda Lozano et al. “Combinatorial Spill Code Optimization and Ultimate
Coalescing”. In: Proceedings of LCTES’14, pp. 23-32. ACM, 2014.

50

https://github.com/unison-code/unison

Conclusions

= Made UIS complete by:
» extending it to handle memory operations and
function calls
» introducing methods to insert jump instructions where
necessary and forbid cyclic data dependencies
® Made UIS practical by:
» extending constraint model with value reuse to improve
code quality
» introducing solving techniques that increase scalability
and robustness
» demonstrating approach to be competitive with LLVM for
up to medium-sized functions

= Showed that combinatorial optimization for instruction
selection is well-suited to exploit modern processors in
embedded systems

51

Outline

8. Extra Material

52

Constraints: Global Instruction Selection

= Every operation must be covered by exactly one
selected match:

omatch[o] = m < sel[m],Voe O,VmeM, (1)

m Every datum must be defined by exactly one selected
match:

dmatch[d] =m < sel[m],Vd e D.YmeM,; (2)

53

Constraints: Global Code Motion

m Operations covered by the same match must be placed
in the same block:
sel[m] = oplace[o;] = oplace[o,], 3)
Vm e M, Yoy,0, € covers(m)
m Matches with an entry block must be placed in the entry
block:
sel[m] = oplace[o] = b, (@)
Vm e M, Vo e covers(m), Vb € entry(m)
m Data must be defined before use:
dplace[d] € dom(oplace[o]),
Vm e Mz, Vd € uses(m), Vo € covers(m)

)

54

Constraints: Global Code Motion

m Restrictions by the definition edges must be enforced:
dplace[d] =b,V {d,b} e DE (6)

m Data must be defined in either block wherein the match
is placed or in a spanned block:

sel[m] = dplace[alt[p]] € {oplace[o]} U spans(m),

Vm e M, Vp € defines(m), Yo € covers(m) 7)

m No data must be placed in a consumed block:

sel[m] = oplace[o] # b,
Yo e O,Vm e M, Vb € consumes(m)

55

Constraints: Inactive Data

m Data defined by a kill match must be inactive:

sel[m] < inactive[alt[p]], 9
Vm € M., Vp € defines(m) ©)

m Data used by non-kill match must be active:

sel[m] = -inactive[alt[p]],

Vm e Mx, Vp € uses(m) (10)

56

Constraints: Data Copying

m Data locations used and defined by matches must be
compatible:

sel[m] = loc[alt[p]] e stores(m,p), (11)
Vm e M,Vp € P s.t.stores(m,p) + @
= Intermediate values must not be reused by other
matches:
sel[m] = loc[alt[p]] = L,
Vm e M, Vp € intvalues(m)

57

Constraints: Block Ordering

m Blocks must be placed in a sequence:
circuit (Upep{succ[b]}) (13)

]
succlentry(m)] =bv
(succ[succ[entry(m)]] = b A empty(succ[entry(m)])), (14)
Y(mbe].
where
empty(b) = oplace[o] # b v omatch[o] e M,,Yo e O

58

Constraints: Cyclic Data Dependencies

= Combinations leading to cyclic data dependencies must
be forbidden:

Y sel[m] <|f|,Vf € F (15)
mef

59

Refined Objective Function

m Construct cost matrix:
C=| (o,m,b,freq(b) x cost(m,0)) | 0 € covers(m),

meM,
beB

(16)
m Restrict the cost for each operation:

table ({0,omatch[o], oplace[o], ocost[0]),C), 17
YoeO (17)

= Compute total cost:

cost =) ocost[o] (18)
0eO

60

Cost Bounding

m Bound total cost:

Crelaxed < cost < CIIvm

61

Copy Extension

® When locations for v; and v, can be the same,
select special null-copy pattern with zero cost

m Otherwise select appropriate copy instruction

62

May Lead to Redundant Copies

63

Alternative Values ...

m v, and v; are copy-related
m m, and m;, may use either value

64

. Enable Value Reuse

m v, and v; are copy-related
m m, and m;, may use either value

65

Case Requiring Additional Jump Insertion

A
bnz condl, B }——

T
B)
bnz cond2, B
F T
C

le—/

m bnz falls to next instruction if cond = F

66

As Is: No Valid Order

Al bnz condl, B

bnz cond2, B

C

67

Requires Additional Jump Instruction

w

bnz condl, B
br C

bnz cond2, B

g

bnz cond2, B
br C

bnz condl, B

68

Extend Pattern Set With Dual-Target Branch
Patterns

For each pattern with fall-through condition:

—
]| | | fall-through | c]| |c
Emit: Cost: Emit: Cost:
bnz cond, B 1 bnz cond, B 1 + cost(br)

br C

69

Example at Risk of Cyclic Data Dependency

p2 = p1 + 4

store q;, D2
Q2 = q + 4

store p;, Q;

70

Forbidding Cyclic Data Dependencies

DEBT

dependency
graph

m For each cycle in dependency graph, not all matches
may be selected

= Similar to method used by Ebner et al. [2]

[2] Ebner et al. “Generalized Instruction Selection Using SSA-Graphs.” In: Proceedings
of LCTES'08, pp. 31-40. ACM, 2008.

71

