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Graph-based Instruction Selection

int f(int a) {
int b = a * 2;
int c = a * 4;
return b + c;

}

ret
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matches

data-flow graph

mulacc

∗

+

pattern graph

Problem: Select matches
such that data-flow graph is

(optimally) covered
(NP-complete in general)
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State of the Art
Selection is greedy and local to basic blocks
Graphs capture data flow only
Operations remain fixed to a given block
(lacks global code motion)

Observed:
Global code motion interacts with selection of complex
instructions
Capturing interaction requires non-greedy approach

Consequence:
Failure to exploit complex instructions of modern
processors in embedded systems
Selection of complex instruction with control flow using
handwritten, ad-hoc routines
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Program Example

void satadd(int* A,
int* B,
int* C)

{
int i = 0;
while (i < N) {
int c = A[i] + B[i];
if (MAX < c)
c = MAX;

C[i] = c;
i++;

}
}

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1

bb2

bb3

bb4 bb5
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Instruction Examples

satadd

add4

Problems:
Incorporates control flow
Extends across multiple

blocks

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1

bb2

bb3

bb4 bb5
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Instruction Examples

satadd
add4

Problems:
Additions must be moved

to same block (requires global
code motion)

Depending on hardware,
may incur additional copy
overhead

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
(t2, t3, t4, i) = ...
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX

store t4, c

bb1

bb2

bb3

bb4 bb5
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Universal Instruction Selection (UIS) [1]
Handles both control and data flow

▸ Enables complex instructions to be captured as
pattern graphs

Integrates global instruction selection
(selects instructions for entire function)
with global code motion

▸ Facilitates selection of complex instructions

Takes data-copying overhead into account
▸ Prevents greedy selection of SIMD instructions

Expressed as a constraint model
▸ Potentially optimal w.r.t. the model
▸ Allows time to be traded for quality

[1] G. Hjort Blindell, R. Castañeda Lozano, M. Carlsson, and C. Schulte. “Modeling
Universal Instruction Selection”. In: Proceedings of CP’15. Springer, 2015, pp.
609–626.
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Our Approach Is a Complement to Traditional
Methods

During development:
Quick compilation times essential
Code quality less important

Before deployment:
Code quality essential
Allow for long compilation times
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Approach
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Constraint Programming

Combinatorial optimization method
▸ First model the problem, then solve the model

Problems modeled as constraint models
▸ Variables – decisions to be made?

x,y,z ∈ D
▸ Constraints – what constitute a solution?

x + y < z
▸ Objective function – what is the best solution?

maximize x
Orthogonal to the variables and constraints

▸ Can be extended (compositional)

Constraint models solved by interleaving
▸ Propagation – remove values in conflict with constraint
▸ Search – try and backtrack
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Example: Sudoku

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79 variable

Initially:
x79 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
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Row Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79x71 x73 x74 x75 x76

Propagate alldiff (x71,6,x73,x74,x75,x76,2,8,x79)
x79 ∈ {1, 3, 4, 5, 7, 9}
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Column Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x19

x29

x39

Propagate alldiff (x19,x29,x39,3,1,6,x79,5,9)
x79 ∈ { 4, 7 }
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Block Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x87 x88

x97

Propagate alldiff (2,8,x79,x87,x88,5,x97,7,9)
x79 ∈ { 4 }
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After Propagation

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

4

x79 = 4
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Representation

Combination of two graphs:
Extended SSA graph
Extended control-flow graph
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Static Single Assignment (SSA) Form

Each variable must be
defined exactly once
Use ϕ-functions when
definition depends on
control flow
Used in virtually all
modern compilers

x1 = . . .

x2 = x1 + 1 x3 = x1 - 1

x4 = ϕ(x2:B, x3:C)

A

B

D

C
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Example Function

int fact(int n) {
int f = 1;
while (n > 1) {
f = f * n;
n--;

}
return f;

}

int fact(int n1) {
entry:
int f1 = 1;

head:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
bool b = n2 <= 1;
if b goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

In C In SSA form
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Goal: Connect The Graphs
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Extend the Control-Flow Graph
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Extend the SSA Graph

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

26



Add Missing Data-Flow Edges
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Goal: Prevent Moves That Break Semantics
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Such Moves Concern Data Used/Defined By ϕ’s
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Definition Edges Prevent Moves

F T

F T

entry

br

head

c.br

body end

br ret

block node

control
node

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1value node

computation
node

definition edge

control-flow graph SSA graph

30



Universal Function (UF) Graph
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Memory Operations and Function Calls
(Not in [1])

May implicitly depend on each other (through
external state)
Moving to another block may break program semantics
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Example

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block
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Capture Implicit Deps Via State Nodes

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block
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Data-Flow Edge Prevents “Upward” Moves

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block
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Definition Edge Prevents “Downward” Moves

block:
. . .
store p, . . .
call foo, p
store p, . . .

st

p

foo st

block
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Instruction Representation

Apply same construction method as for UF graphs
▸ Enables complex instructions to be captured as pattern

graphs
▸ Example: satadd (has both control and data flow)

T
F

entry

c.br clamp

br

end

s

+

t

d1

ϕ<

MAX

d3
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Other Features (Not in [1])

Insertion of additional jump instructions when necessary
▸ Otherwise leads to model with no solutions

Reuse of copied values
▸ Leads to more efficient code

Prevention of cyclic data dependencies
▸ Otherwise leads to incorrect code
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Variables

Which matches to select?
In which blocks to place selected matches?
In which locations to make values available?
Which copied value to use?
In what order to place blocks?
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Constraints

Function:
UF graph must be covered (graph partitioning)
Values and states must be defined before use
Placements restricted by definition edges
. . .

Processor:
Values must be in compatible locations
Fall-through conditions must be fulfilled
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Objective Function

Minimize execution time
▸ Typical implementation:

∑
m∈M

sel[m] × cost(m) × freq(blockOf (m))

▸ Execution frequencies computed statically (by LLVM)
▸ Apply refined implementation to increase propagation

[minimize code size, . . .]

42



Techniques to Improve Solving

Implied and dominance breaking constraints
Cost bounding
Presolving
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Setup
Randomly selected 20 functions from MEDIABENCH
using k-means clustering

▸ Medium-size functions (50–200 LLVM operations)
▸ No scalar or floating-point operations

Chose HEXAGON 5 as target
▸ Rich instruction set
▸ Used in many embedded systems

Found matches using VF2 [3]
▸ Pattern graphs can be arbitrarily complex

Modeled using MINIZINC

Solved using CHUFFED

Timed out after 10 minutes
▸ No improvements observed after ∼5 minutes

[3] Cordella et al. “An Improved Algorithm for Matching Large Graphs”. In: Proceedings
of GbRPR’01, pp. 149–159. Springer, 2001.
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Our Approach vs LLVM 3.8

0%

5%

10%

15%

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_TexImage3DEX.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

:

: :

:

:

:

:

Compared: estimated speedup
Baseline: solutions produced by LLVM
Dots on bars indicate timeouts
Geometric mean improvement: 2.5%
Speedups due to global code motion

▸ move loading of constants to blocks with lower exec. freq.
▸ selection of auto-increment memory instruction

and block ordering
▸ better sequence led to fewer jump instructions
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Value Reuse vs Without
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alloc_name_is_s.

alloc_save_spac.

checksum

debug_dump_byte.

gl_EnableClient.

gl_TexImage3DEX.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gp_enumerate_fi.

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

:

:

:

: :

Compared: estimated speedup
Baseline: solutions produced without value reuse
Dots on bars indicate timeouts
Geometric mean improvement: 5.4%
Better due to less constant reloading

▸ crucial in initialization routines
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Refined vs Naive Objective Function
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20%
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40%
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1 s 10 s 100 s 1000 s

naive objective function

refined objective function

Compared: cumulative number of optimality proofs
Refined objective function is essential for scalability
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Future Work

Address model limitations
▸ Lacks recomputation – relax exact coverage

Extend toolchain to produce executable code
▸ Engineering task

Integrate instruction scheduling and register allocation [4]
▸ Code generation tasks interact with one another –

feasible because constraint models are compositional

Make available on Github as part of Unison
▸ https://github.com/unison-code/unison

[4] Castañeda Lozano et al. “Combinatorial Spill Code Optimization and Ultimate
Coalescing”. In: Proceedings of LCTES’14, pp. 23–32. ACM, 2014.
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Conclusions
Made UIS complete by:

▸ extending it to handle memory operations and
function calls

▸ introducing methods to insert jump instructions where
necessary and forbid cyclic data dependencies

Made UIS practical by:
▸ extending constraint model with value reuse to improve

code quality
▸ introducing solving techniques that increase scalability

and robustness
▸ demonstrating approach to be competitive with LLVM for

up to medium-sized functions

Showed that combinatorial optimization for instruction
selection is well-suited to exploit modern processors in
embedded systems
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Constraints: Global Instruction Selection

Every operation must be covered by exactly one
selected match:

omatch[o] = m⇔ sel[m],∀o ∈ O,∀m ∈Mo (1)

Every datum must be defined by exactly one selected
match:

dmatch[d] = m⇔ sel[m],∀d ∈ D,∀m ∈Md (2)
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Constraints: Global Code Motion

Operations covered by the same match must be placed
in the same block:

sel[m]⇒ oplace[o1] = oplace[o2],
∀m ∈M,∀o1, o2 ∈ covers(m) (3)

Matches with an entry block must be placed in the entry
block:

sel[m]⇒ oplace[o] = b,
∀m ∈M,∀o ∈ covers(m),∀b ∈ entry(m) (4)

Data must be defined before use:
dplace[d] ∈ dom(oplace[o]),

∀m ∈Mϕ,∀d ∈ uses(m),∀o ∈ covers(m) (5)
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Constraints: Global Code Motion

Restrictions by the definition edges must be enforced:

dplace[d] = b,∀{d, b} ∈ DE (6)

Data must be defined in either block wherein the match
is placed or in a spanned block:

sel[m]⇒ dplace[alt[p]] ∈ {oplace[o]} ∪ spans(m),
∀m ∈M,∀p ∈ defines(m),∀o ∈ covers(m) (7)

No data must be placed in a consumed block:
sel[m]⇒ oplace[o] ≠ b,

∀o ∈ O,∀m ∈M,∀b ∈ consumes(m) (8)
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Constraints: Inactive Data

Data defined by a kill match must be inactive:
sel[m]⇔ inactive[alt[p]],
∀m ∈M×,∀p ∈ defines(m) (9)

Data used by non-kill match must be active:
sel[m]⇒ ¬inactive[alt[p]],
∀m ∈M×,∀p ∈ uses(m) (10)
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Constraints: Data Copying

Data locations used and defined by matches must be
compatible:

sel[m]⇒ loc[alt[p]] ∈ stores(m,p),
∀m ∈M,∀p ∈ P s.t. stores(m,p) ≠ ∅ (11)

Intermediate values must not be reused by other
matches:

sel[m]⇒ loc[alt[p]] = lnull,
∀m ∈M,∀p ∈ intvalues(m) (12)
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Constraints: Block Ordering

Blocks must be placed in a sequence:

circuit (∪b∈B{succ[b]}) (13)

succ[entry(m)] = b ∨
(succ[succ[entry(m)]] = b ∧ empty(succ[entry(m)])),

∀⟨m⟩b ∈ J,
(14)

where

empty(b) ≡ oplace[o] ≠ b ∨ omatch[o] ∈M�,∀o ∈ O
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Constraints: Cyclic Data Dependencies

Combinations leading to cyclic data dependencies must
be forbidden:

∑
m∈f

sel[m] < ∣f ∣,∀f ∈ F (15)
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Refined Objective Function

Construct cost matrix:

C =
⎡⎢⎢⎢⎢⎢⎣
⟨o,m, b, freq(b) × cost(m, o)⟩

m ∈M,
o ∈ covers(m),

b ∈ B

⎤⎥⎥⎥⎥⎥⎦
(16)

Restrict the cost for each operation:
table (⟨o,omatch[o],oplace[o],ocost[o]⟩,C) ,

∀o ∈ O (17)

Compute total cost:

cost =∑
o∈O

ocost[o] (18)
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Cost Bounding

Bound total cost:

Crelaxed ≤ cost < Cllvm (19)
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Copy Extension

v1

cp

v2

v

When locations for v1 and v2 can be the same,
select special null-copy pattern with zero cost
Otherwise select appropriate copy instruction
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May Lead to Redundant Copies

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value
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Alternative Values . . .

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value
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. . . Enable Value Reuse

v1

cp cp

v2 v3

v1 ≠ (v2 = v3)

mv v2 ← v1 mv v3 ← v1

m1 m2

v2 and v3 are copy-related
m1 and m2 may use either value
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Case Requiring Additional Jump Insertion

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

bnz falls to next instruction if cond = F
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As Is: No Valid Order

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C
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Requires Additional Jump Instruction

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C
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Extend Pattern Set With Dual-Target Branch
Patterns

For each pattern with fall-through condition:

T F
c.br

fall-through

A

B C

Emit: Cost:
bnz cond, B 1

T F
c.br

A

B C

Emit: Cost:
bnz cond, B 1 + cost(br)
br C
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Example at Risk of Cyclic Data Dependency

. . .
p2 = p1 + 4
store q1, p2
q2 = q1 + 4
store p1, q2

q1

+

q2

st

+

p1

p2

st

4

m1 m2
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Forbidding Cyclic Data Dependencies

q1

+

q2

st

+

p1

p2

st

4

m1 m2

m1 m2

dependency
graph

For each cycle in dependency graph, not all matches
may be selected
Similar to method used by Ebner et al. [2]

[2] Ebner et al. “Generalized Instruction Selection Using SSA-Graphs.” In: Proceedings
of LCTES’08, pp. 31–40. ACM, 2008.
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