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Ideal: Want to Model at a High Level of Abstraction
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Reality: Have to Implement at a Low Level of Abstraction
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Problem: How to Bridge the Gap?
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Solution: Use Automated Synthesis Tools
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Problem 2: How to Build Such a Tool?
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Problem 2: Different Challenges for Different Platforms
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This Talk: A Synthesis Tool for GPGPUs
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What Are GPGPUs?
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General-Purpose Graphics Processing Unit

Massively parallel, throughput-oriented platform

Can yield tremendous speedup for data-parallel programs

Comparison between CPUs and GPGPUs:
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» Treated as an accelerator

cudaMalloc(...);
cudaMemcpy (&data) ;

B E

Copy input data
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How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

£<<<N>>>(&data) ;

Tell GPGPU to execute function f on input data, using N threads

CPU

GPGPU

!

memory

global
memory
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How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

while (1);

]

Wait until all threads have finished
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How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

cudaMemcpy (&res) ;
cudaFree(...);

]

© |

Copy result
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Inside the GPGPU During Execution
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Every Thread Executes the Same f
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Each Thread Has a Unique Thread ID

threadld.x
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f Uses Thread ID to Determine What Data to Read
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f Uses Thread ID to Determine What Data to Read
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f Uses Thread ID to Determine What Data to Read
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f Uses Thread ID to Determine Where to Write Results
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Requirements for Optimal Performance

» Abundance of data parallelism to offset GPGPU overhead
(due mainly for data copying)
» High Computation-to-Global Memory Traffic Ratio
» Often requires efficient use of various resources (like shared
memory)

» No resource over-use
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GPGPUs are Powerful, but Difficult to Program

» Complex data indexing schemes

» Performance depends on many interconnected factors
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What Is ForSyDe?

» Formal System Design
» A formal modeling methodology

» Uses the theory of Models of Computation (MoCs)
» Captures behavior of heterogeneous embedded systems as
ForSyDe models
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A ForSyDe model is a concurrent network of processes . ..



What Is a ForSyDe Model?
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What Is a Process Constructor?
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What Is a Process Constructor?

process constructor
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... has a number of declared input and output signals, ...
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What Is a Process Constructor?
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Creating a Process
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The MapSY Process Constructor
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The MapSY Process Constructor
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The MapSY Process Constructor
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The UnzipSY Process Constructor
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The UnzipSY Process Constructor
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The UnzipSY Process Constructor
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The ZipSY Process Constructor
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The ZipSY Process Constructor
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The ZipSY Process Constructor
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ForSyDe Models Suitable for GPGPUs?
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Want to Handle Only One Function
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Method 1: Section Splitting
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Method 2: Process Coalescing
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Method 2: Process Coalescing
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Method 2: Process Coalescing
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Method 2: Process Coalescing
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Method 2: Process Coalescing
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Method 2: Process Coalescing
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Fuse Zip-Map-Unzip Structures Into ParallelMaps
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Fuse Zip-Map-Unzip Structures Into ParallelMaps
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» ParallelmapSY processes:

» Choose C or CUDA C implementation
» Choose to use shared memory in CUDA C implementation

» Other processes:
» Always C implementation
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f2cc
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1. Design ForSyDe model
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ForSyDe-2-CUDA C ForSyDe

Proof-of-concept synthesis tool model
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Assumptions:

1. All functions are written in C
2. All processes are based on
synchronous MoC f2cc

Design flow:

1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C
4. Compile and execute on GPGPU

Other aspects in paper but not in talk:

» Process scheduling
» Signal management GPGPU
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Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

» « 30x speedup is good
» Expected outcome:

» Synthesized C to perform no worse
» Synthesized CUDA C to perform better
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ForSyDe Model of Mandelbrot Application
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Achieve Expected Outcome for Mandelbrot Application

Speedup vs. hand-written C
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O Synthesized C
B Synthesized C + CUDA C (no shared memory)
A Synthesized C + CUDA C (using shared memory)
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ForSyDe Model of Image Processing Application
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Achieve Expected Outcome for Image Processing
Application
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Speedup vs. hand-written C

Number of pixel domains (1,000,000 )

O Synthesized C

@ Synthesized C + CUDA C (section splitting, no shared memory)

A Synthesized C + CUDA C (process coalescing, no shared memory)
@ Synthesized C + CUDA C (process coalescing, with shared memory)
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Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying
=> more speedup when using process coalescing

» More shared memory per thread for image proc. app. than
Mandelbrot

= over-use of shared memory
= less speedup than when not using shared memory
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Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU

» Experimental cost analysis
» Look into DSE (design space exploration)

» Eager memory-copying scheme
» Reduce overhead through lazy copying
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Summary

ForSyDe
model
» Get high-performance implementation for
f2cc supported design pattern
GPGPUs

f2cc available at:
https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc
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https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

NVIDIA's GPGPU Architecture

Registers Registers

Inst. cache Inst. cache

Constant cache Constant cache

Shared
memory

Shared
memory

Texture memory
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<graphml>
<graph id="test" edgedefault="directed">

<node id="unzip"> ... </node>
<node id="zip"> ... </node>
<node id="mapl">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
int f1(int x) { return x + 1; }
</data>
<port name="in" /><port name="out" />
</node>
<node id="map6">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
int f£f2(int x) { return x *x 2; }
</data>
<port name="in" /><port name="out" />
</node>
<edge source="unzip" sourceport="outl" target="mapl"
targetport="in" />
<edge source="mapl" sourceport="out" target="map4"
targetport="in" />
</graph>
</graphml>




Function Produced From Process Coalescing

__device__

int f12(int x) {
int res_f1 £f1(x);
int res_f2 = f2(res_f1);
return res_£f2;

o1
o

]



Kernel Function Produced (Without Shared Memory)

__global__
void f12_kernel (
const int* input,
int* output,
int offset)
unsigned int global_index =
(blockIdx.x * blockDim.x + threadIdx.x) + offset;

if (global_index < 3) {
int input_index = global_index * 1;

output [global_index] = f12(input[input_index]);
¥
}




Kernel Function Produced (With Shared Memory)

__global__

void f12_kernel (
const int* input,
int* output,
int offset)

unsigned int global_index =

(blockIdx.x * blockDim.x + threadIdx.x) + offset;
extern __shared__ int input_cached[];
if (global_index < 3) {

int input_index = threadIdx.x * 1;

int gi_index = global_index * 1;

input_cached [input_index + 0] = input[gi_index + 0];

output [global_index] = f12(input_cached[input_index]);

o
N

]



Produced Invoker Function (1 of 3)

void f12_invoker (const int* input, int* output) {
int* device_input;
int* device_output;

struct cudaDeviceProp prop;
cudaGetDeviceProperties (&prop, 0);

int tlimit = prop.maxThreadsPerBlock x*
prop.multiProcessorCount;

cudaMalloc ((void**) &device_input, 3 * sizeof (int));
cudaMalloc ((void**) &device_output, 3 * sizeof (int));
cudaMemcpy ((void*) device_input,

(voidx*) input,

3 * sizeof (int),

cudaMemcpyHostToDevice);




Produced Invoker Function (2 of 3)

if (prop.kernelExecTimeoutEnabled) {
int num_t_left = 3;
int offset = 0;
while (num_t_left > 0) {
int num_t_exec =
num_t_left < tlimit ? num_t_left : tlimit;
KernelConfig ¢ = calculateBestKernelConfig(...);
f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
(device_input, device_output, offset);
int num_t_exed = c.grid.x * c.threadBlock.x;
num_t_left -= num_t_exed;
offset += num_t_exed;
}
}
else {
KernelConfig ¢ = calculateBestKernelConfig(...);
f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
(device_input, device_output, 0);




Produced Invoker Function (3 of 3)

cudaMemcpy ((void*) output,

(void*) device_output,

3 * sizeof (int),

cudaMemcpyDeviceToHost);
cudaFree ((void*) device_input);
cudaFree ((void*) device_output);
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