Synthesizing Code for GPGPUs from
Abstract Formal Models

Gabriel Hjort Blindell
Christian Menne
Ingo Sander

KTH Royal Institute of Technology, Sweden

October 15, 2014
FDL2014

Ideal: Want to Model at a High Level of Abstraction

abstract
model

level of abstraction

Reality: Have to Implement at a Low Level of Abstraction

level of abstraction

abstract
model

execution
platform

Problem: How to Bridge the Gap?

level of abstraction

abstract
model

execution
platform

Solution: Use Automated Synthesis Tools

level of abstraction

abstract
model

synthesis
tool

execution
platform

o

]

Problem 2: How to Build Such a Tool?

level of abstraction

abstract
model

execution
platform

6

52

Problem 2: Different Challenges for Different Platforms

level of abstraction

abstract
model

GPGPUs

CPUs

DSPs

FPGAs

ASICs

7/52

This Talk: A Synthesis Tool for GPGPUs

level of abstraction

GPGPUs

CPUs

DSPs

FPGAs

ASICs

8/52

Outline

v

v

v

v

Background

» GPGPUs
» ForSyDe

Our ideas and synthesis tool (f2cc)
Experiments

Summary

What Are GPGPUs?

What Are GPGPUs?

» General-Purpose Graphics Processing Unit

10/52

What Are GPGPUs?

» General-Purpose Graphics Processing Unit

» Massively parallel, throughput-oriented platform

10 /52

What Are GPGPUs?

» General-Purpose Graphics Processing Unit
» Massively parallel, throughput-oriented platform

» Can yield tremendous speedup for data-parallel programs

10 /52

What Are GPGPUs?

v

v

v

General-Purpose Graphics Processing Unit

Massively parallel, throughput-oriented platform

Can yield tremendous speedup for data-parallel programs

Comparison between CPUs and GPGPUs:

FU FU
control
logic
FU FU
| cache
| memory global memory
CPU GPGPU

10/52

How to Use GPGPUs?

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

11 /52

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()
» Treated as an accelerator

Ea |[EN

11/52

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

cudaMalloc(...);
cudaMemcpy (&data) ;

B E

Copy input data

11/52

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

£<<<N>>>(&data) ;

Tell GPGPU to execute function f on input data, using N threads

CPU

GPGPU

!

memory

global
memory

11 /52

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

while (1);

]

Wait until all threads have finished

11/52

How to Use GPGPUs?

» Programmed using C dialect (here assuming CUDA ()

» Treated as an accelerator

cudaMemcpy (&res) ;
cudaFree(...);

]

© |

Copy result

11/52

Inside the GPGPU During Execution

e
B
e

Every Thread Executes the Same f

13/52

Each Thread Has a Unique Thread ID

threadld.x
0 1 2 3 4 5 6
AR -
A A Y
A -
[4 0 A -

[A A 0]
LR R -

A-plpeaiys

I -

14 /52

f Uses Thread ID to Determine What Data to Read

threadld.x

~~
*
*
|
~\~
-
w
A-plpeaiys

B
S
-
-
-
~_|
\
-
-
[e)]

f Uses Thread ID to Determine What Data to Read

threadld.x
0 1 2 3 4 5 6
f f f f f f f |0
DIDNPIPIPILNP]
/f /f /f /f /f f f |2
/ / / / 5
I
/f f f f f f f |3 &
/ J / / £ o
<
f f f f/ f/ / f | 4
—P f} f/ f / /f f f |5
I f/ / /f f f f f |6

f Uses Thread ID to Determine What Data to Read

threadld.x

f f f f f f f |0

f f f f f f |1

LI -
!f /f /f /f /f f f |3
If /f /f f f, f, f |4
!f f f' f' f/ % f |5
If f f/ % / f f |6

I A

N I N Y O Y Y

A-plpeaiys

f Uses Thread ID to Determine Where to Write Results

threadld.x

4

5

6

(D

1 2

DIIP
/f/ffffff
ff%/fff
f//f /f/ff
il A8 AT
APl
///fffff

A-plpeaiys

Requirements for Optimal Performance

Requirements for Optimal Performance

» Abundance of data parallelism to offset GPGPU overhead
(due mainly for data copying)

Requirements for Optimal Performance

» Abundance of data parallelism to offset GPGPU overhead
(due mainly for data copying)
» High Computation-to-Global Memory Traffic Ratio

Requirements for Optimal Performance

» Abundance of data parallelism to offset GPGPU overhead
(due mainly for data copying)
» High Computation-to-Global Memory Traffic Ratio

» Often requires efficient use of various resources (like shared
memory)

Requirements for Optimal Performance

» Abundance of data parallelism to offset GPGPU overhead
(due mainly for data copying)
» High Computation-to-Global Memory Traffic Ratio
» Often requires efficient use of various resources (like shared
memory)

» No resource over-use

GPGPUs are Powerful, but Difficult to Program

GPGPUs are Powerful, but Difficult to Program

» Complex data indexing schemes

GPGPUs are Powerful, but Difficult to Program

» Complex data indexing schemes

» Performance depends on many interconnected factors

18 /52

What Is ForSyDe?

What Is ForSyDe?

» Formal System Design

19 /52

What Is ForSyDe?

» Formal System Design
» A formal modeling methodology

19 /52

What Is ForSyDe?

» Formal System Design
» A formal modeling methodology
» Uses the theory of Models of Computation (MoCs)

19 /52

What Is ForSyDe?

» Formal System Design
» A formal modeling methodology

» Uses the theory of Models of Computation (MoCs)
» Captures behavior of heterogeneous embedded systems as
ForSyDe models

19 /52

What Is a ForSyDe Model?

What Is a ForSyDe Model?

A ForSyDe model is a concurrent network of processes . ..

What Is a ForSyDe Model?

S1

N

i Py P> °
?2\‘ P3 j?}

... that communicate via signals.

N
N
a
]

What Is a Process Constructor?

What Is a Process Constructor?

process constructor

name

A process constructor is a template . ..

What Is a Process Constructor?

process constructor

nameSY

based on the
synchronous MoC

. that is based on a specific model of computation, ...

What Is a Process Constructor?

process constructor

7I_> nameSY | g,

—
—> —> Op

based on the
synchronous MoC

... has a number of declared input and output signals, ...

26 /52

What Is a Process Constructor?

process constructor

-
i s,
14 1151

. |_al_||:92_|
- En =
In™> = —> Op

based on the
synchronous MoC

... and takes zero or more side effect-free arguments.

N
NI
o1
)

Creating a Process

Creating a Process

process constructor

=
i

mooreSY

g

I
1 _V_l

Creating a Process

process constructor

=
i

mooreSY

g

I
1 _V_l

arguments

Creating a Process

process constructor

arguments

=
i

mooreSY

g

I
1 _V_l

L =
— 0 +

process

—
I'—)

mooreSY

— 0o

The MapSY Process Constructor

—
F

mapSY

2

——>"0

The MapSY Process Constructor

EEE

mapSY

The MapSY Process Constructor

........-

29/52

The UnzipSY Process Constructor

—

unzipSY

01
/ 0>
/
N

—

\ ;

—
On

30

The UnzipSY Process Constructor

..“m

30/52

The UnzipSY Process Constructor

e i

30/52

The ZipSY Process Constructor

i
2\ zipSY

31/52

The ZipSY Process Constructor

31/52

The ZipSY Process Constructor

S

31/52

ForSyDe Models Suitable for GPGPUs?

ForSyDe Models Suitable for GPGPUs?

mapSY

PERp—

mapSY

mapSY

\

zipSY

mapSY mapSY

mapSY mapSY
/

unzipSY v v
map. map!
T

ma;;SY ma;;SY

mapSY

The split-map-merge pattern

> « . .

Want to Handle Only One Function

mapSY

NN

.o

mapSY

unzipSY

mapSY

zipSY

> - - .

L

e

mapSY mapSY
mapSY mapSY
mapSY mapSY
ma|.)SY ma|.)SY

mapSY

33/52

Method 1: Section Splitting

34 /52

Method 1: Section Splitting

34 /52

Method 2: Process Coalescing

mapSY

NN

.o

mapSY

unzipSY

mapSY

zipSY

> - - .

L

e

mapSY mapSY
mapSY mapSY
mapSY mapSY
ma|.)SY ma|.)SY

mapSY

35/52

Method 2: Process Coalescing

.o

unzipSY

[\

mapSY mapSY mapSY

@

SY SY 5% ApSY >
map. map. map. /

mapSY

mapSY mapSY

3652

Method 2: Process Coalescing

mapSY

mapSY

mapSY

37/52

Method 2: Process Coalescing

mapSY
f

mapSY

mapSY

37/52

Method 2: Process Coalescing

mapSY mapSY

mapSY

38/52

Method 2: Process Coalescing

39/52

Method 2: Process Coalescing

40 /52

Fuse Zip-Map-Unzip Structures Into ParallelMaps

mapSY

o =)

unzipSY

mapSY

/
T~

mapSY

\
|

zipSY

mapSY

41 /52

Fuse Zip-Map-Unzip Structures Into ParallelMaps

mapSY

1

o =)

unzipSY

mapSY

/
T~

zipSY

\
|

Pp—

parallelmapSY

> - .

41 /52

Synthesis

42 /52

Synthesis

» ParallelmapSY processes:

Synthesis

» ParallelmapSY processes:
» Choose C or CUDA C implementation

Synthesis

» ParallelmapSY processes:

» Choose C or CUDA C implementation
» Choose to use shared memory in CUDA C implementation

Synthesis

» ParallelmapSY processes:
» Choose C or CUDA C implementation
» Choose to use shared memory in CUDA C implementation

» Other processes:

Synthesis

» ParallelmapSY processes:

» Choose C or CUDA C implementation
» Choose to use shared memory in CUDA C implementation

» Other processes:
» Always C implementation

f2cc

43 /52

f2cc

» ForSyDe-2-CUDA C

43 /52

f2cc

» ForSyDe-2-CUDA C

» Proof-of-concept synthesis tool

43 /52

f2cc

» ForSyDe-2-CUDA C

» Proof-of-concept synthesis tool
» Assumptions:

43 /52

f2cc

» ForSyDe-2-CUDA C

» Proof-of-concept synthesis tool
» Assumptions:
1. All functions are written in C

43 /52

f2cc

» ForSyDe-2-CUDA C

» Proof-of-concept synthesis tool
» Assumptions:

1. All functions are written in C
2. All processes are based on
synchronous MoC

43 /52

f2cc

v

ForSyDe-2-CUDA C

Proof-of-concept synthesis tool

v

v

Assumptions:
1. All functions are written in C
2. All processes are based on
synchronous MoC

v

Design flow:

43 /52

f2cc

v

ForSyDe-2-CUDA C

Proof-of-concept synthesis tool

v

v

Assumptions:
1. All functions are written in C
2. All processes are based on
synchronous MoC

v

Design flow:
1. Design ForSyDe model

ForSyDe
model

43 /52

f2cc

v

ForSyDe-2-CUDA C

Proof-of-concept synthesis tool

v

v

Assumptions:
1. All functions are written in C
2. All processes are based on
synchronous MoC

v

Design flow:

1. Design ForSyDe model
2. Run £2cc on ForSyDe model

ForSyDe
model

f2cc

43 /52

f2cc

» ForSyDe-2-CUDA C ForSyDe
» Proof-of-concept synthesis tool model
» Assumptions:

1. All functions are written in C

2. All processes are based on
synchronous MoC f2cc
» Design flow:
1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C

43 /52

f2cc

» ForSyDe-2-CUDA C ForSyDe
» Proof-of-concept synthesis tool model
» Assumptions:

1. All functions are written in C

2. All processes are based on
synchronous MoC f2cc
» Design flow:
1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C

4. Compile and execute on GPGPU

GPGPU

43 /52

f2cc

v

ForSyDe-2-CUDA C ForSyDe

Proof-of-concept synthesis tool model

v

v

Assumptions:

1. All functions are written in C
2. All processes are based on
synchronous MoC f2cc

Design flow:

1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C
4. Compile and execute on GPGPU

Other aspects in paper but not in talk:

v

v

GPGPU

43 /52

f2cc

v

ForSyDe-2-CUDA C ForSyDe

Proof-of-concept synthesis tool model

v

v

Assumptions:
1. All functions are written in C
2. All processes are based on
synchronous MoC f2cc
Design flow:
1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C
4. Compile and execute on GPGPU
Other aspects in paper but not in talk:
» Process scheduling

v

v

GPGPU

43 /52

f2cc

v

ForSyDe-2-CUDA C ForSyDe

Proof-of-concept synthesis tool model

v

v

Assumptions:

1. All functions are written in C
2. All processes are based on
synchronous MoC f2cc

Design flow:

1. Design ForSyDe model
2. Run f2cc on ForSyDe model A
3. Get implementation in C+CUDA C C+CUDA C
4. Compile and execute on GPGPU

Other aspects in paper but not in talk:

» Process scheduling
» Signal management GPGPU

v

v

43 /52

Experiments: Setup and Expectations

44 /52

Experiments: Setup and Expectations

» Setup:

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models
» Mandelbrot application

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models
» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models
» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

» « 30x speedup is good

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

» « 30x speedup is good
» Expected outcome:

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

» « 30x speedup is good
» Expected outcome:
» Synthesized C to perform no worse

44 /52

Experiments: Setup and Expectations

» Setup:
» Tested f2cc on two ForSyDe models

» Mandelbrot application
» Industrial-scale image processing application

» Executed synthesized code on Intel i7 + GPGPU with 96 cores
» Compared performance against hand-written C
implementations

» « 30x speedup is good
» Expected outcome:

» Synthesized C to perform no worse
» Synthesized CUDA C to perform better

44 /52

ForSyDe Model of Mandelbrot Application

mapSY

F({cx, &5 imax))

/

—
I'—)

mapSY
f(<CX7 Cy, imax>)

unzipSY

mapSY

F({Sx, &5 imax))

> O

N

mapSY
f({cxs €y imax))

45 /52

Achieve Expected Outcome for Mandelbrot Application

Speedup vs. hand-written C

30 3

254

201

151

10

T T T T

1 2 3 4 5 6 7 8 9 10
Number of pixels (100,000)

O Synthesized C
B Synthesized C + CUDA C (no shared memory)
A Synthesized C + CUDA C (using shared memory)

46

52

ForSyDe Model of Image Processing Application

mapSY
A(D)

mapSY
f(D)

S
1Y
T
wn
~) <

mapSY
f(D)

T—» unzipSY 5 zipSY |> o
ap

ia

2

S
EIE
T

S &

=

o

o

7}
<
3

O
o

7}
<
=

<

3 i
S| S
\—/2 N
3
2. I
e S
&h
9 S

oh
—

O
~—

map$S

(A(0)

D = (p1, p2, P3; P4, Ps, Ps; P7)

Achieve Expected Outcome for Image Processing
Application

115
10 1
94
8
7
6
5
44
3
21
1 O O OO O O O O OO

Speedup vs. hand-written C

Number of pixel domains (1,000,000)

O Synthesized C

@ Synthesized C + CUDA C (section splitting, no shared memory)

A Synthesized C + CUDA C (process coalescing, no shared memory)
@ Synthesized C + CUDA C (process coalescing, with shared memory)

48 /52

Discussion of Experiment Results

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.

=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying
=> more speedup when using process coalescing

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying
=> more speedup when using process coalescing

» More shared memory per thread for image proc. app. than
Mandelbrot

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying
=> more speedup when using process coalescing

» More shared memory per thread for image proc. app. than
Mandelbrot
= over-use of shared memory

49 /52

Discussion of Experiment Results

» Mandelbrot more compute-intense than image proc. app.
=- more speedup for Mandelbrot

» Section splitting leads to excess memory copying
=> more speedup when using process coalescing

» More shared memory per thread for image proc. app. than
Mandelbrot

= over-use of shared memory
= less speedup than when not using shared memory

49 /52

Current Status & Future Work

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern
» Extend support for additional process constructors

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern
» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU
» Experimental cost analysis

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern
» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU

» Experimental cost analysis
» Look into DSE (design space exploration)

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU

» Experimental cost analysis
» Look into DSE (design space exploration)

» Eager memory-copying scheme

Current Status & Future Work

» Proof-of-concept prototype for split-map-merge pattern

» Extend support for additional process constructors
» Extend support for additional patterns
» Extend support for additional MoCs

» Greedy evaluation — always implement on GPGPU

» Experimental cost analysis
» Look into DSE (design space exploration)

» Eager memory-copying scheme
» Reduce overhead through lazy copying

Summary

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

Summary

GPGPUs

51/52

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

Summary

GPGPUs

52/52

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

Summary

» Get high-performance implementation for
supported design pattern

GPGPUs

52/52

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

Summary

ForSyDe
model
» Get high-performance implementation for
f2cc supported design pattern
GPGPUs

f2cc available at:
https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

o1
0

]

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

NVIDIA's GPGPU Architecture

Registers Registers

Inst. cache Inst. cache

Constant cache Constant cache

Shared
memory

Shared
memory

Texture memory

53/52

<graphml>
<graph id="test" edgedefault="directed">

<node id="unzip"> ... </node>
<node id="zip"> ... </node>
<node id="mapl">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
int f1(int x) { return x + 1; }
</data>
<port name="in" /><port name="out" />
</node>
<node id="map6">
<data key="process_type">mapSY</data>
<data key="procfun_arg">
int f£f2(int x) { return x *x 2; }
</data>
<port name="in" /><port name="out" />
</node>
<edge source="unzip" sourceport="outl" target="mapl"
targetport="in" />
<edge source="mapl" sourceport="out" target="map4"
targetport="in" />
</graph>
</graphml>

Function Produced From Process Coalescing

__device__

int f12(int x) {
int res_f1 £f1(x);
int res_f2 = f2(res_f1);
return res_£f2;

o1
o

]

Kernel Function Produced (Without Shared Memory)

__global__
void f12_kernel (
const int* input,
int* output,
int offset)
unsigned int global_index =
(blockIdx.x * blockDim.x + threadIdx.x) + offset;

if (global_index < 3) {
int input_index = global_index * 1;

output [global_index] = f12(input[input_index]);
¥
}

Kernel Function Produced (With Shared Memory)

__global__

void f12_kernel (
const int* input,
int* output,
int offset)

unsigned int global_index =

(blockIdx.x * blockDim.x + threadIdx.x) + offset;
extern __shared__ int input_cached[];
if (global_index < 3) {

int input_index = threadIdx.x * 1;

int gi_index = global_index * 1;

input_cached [input_index + 0] = input[gi_index + 0];

output [global_index] = f12(input_cached[input_index]);

o
N

]

Produced Invoker Function (1 of 3)

void f12_invoker (const int* input, int* output) {
int* device_input;
int* device_output;

struct cudaDeviceProp prop;
cudaGetDeviceProperties (&prop, 0);

int tlimit = prop.maxThreadsPerBlock x*
prop.multiProcessorCount;

cudaMalloc ((void**) &device_input, 3 * sizeof (int));
cudaMalloc ((void**) &device_output, 3 * sizeof (int));
cudaMemcpy ((void*) device_input,

(voidx*) input,

3 * sizeof (int),

cudaMemcpyHostToDevice);

Produced Invoker Function (2 of 3)

if (prop.kernelExecTimeoutEnabled) {
int num_t_left = 3;
int offset = 0;
while (num_t_left > 0) {
int num_t_exec =
num_t_left < tlimit ? num_t_left : tlimit;
KernelConfig ¢ = calculateBestKernelConfig(...);
f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
(device_input, device_output, offset);
int num_t_exed = c.grid.x * c.threadBlock.x;
num_t_left -= num_t_exed;
offset += num_t_exed;
}
}
else {
KernelConfig ¢ = calculateBestKernelConfig(...);
f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
(device_input, device_output, 0);

Produced Invoker Function (3 of 3)

cudaMemcpy ((void*) output,

(void*) device_output,

3 * sizeof (int),

cudaMemcpyDeviceToHost);
cudaFree ((void*) device_input);
cudaFree ((void*) device_output);

60 /52

	Appendix

