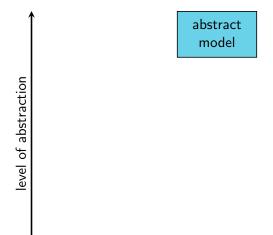
Synthesizing Code for GPGPUs from Abstract Formal Models

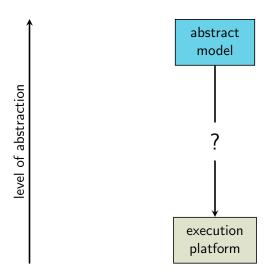
Gabriel Hjort Blindell


Christian Menne Ingo Sander

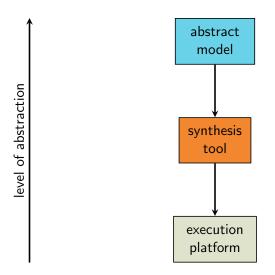
KTH Royal Institute of Technology, Sweden

October 15, 2014 FDL2014

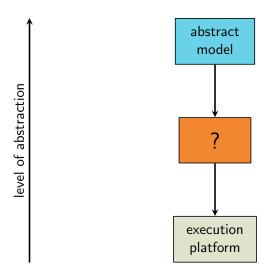
Ideal: Want to Model at a High Level of Abstraction

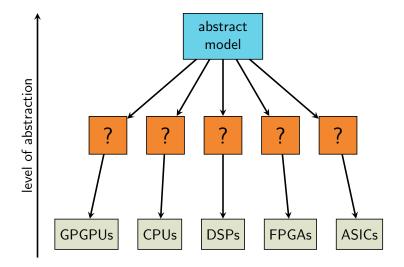


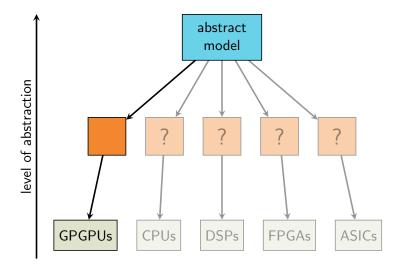
Reality: Have to Implement at a Low Level of Abstraction


abstract model level of abstraction execution platform

3 / 52


Problem: How to Bridge the Gap?

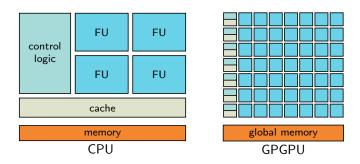

Solution: Use Automated Synthesis Tools


Problem 2: How to Build Such a Tool?

Problem 2: Different Challenges for Different Platforms

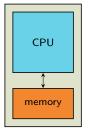
This Talk: A Synthesis Tool for GPGPUs

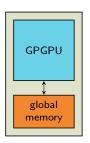
Outline

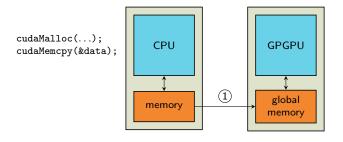

- ► Background
 - ► GPGPUs
 - ► ForSyDe
- ► Our ideas and synthesis tool (f2cc)
- ► Experiments
- ► Summary

► General-Purpose Graphics Processing Unit

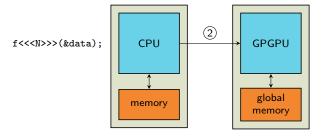
- ► General-Purpose Graphics Processing Unit
- ► Massively parallel, throughput-oriented platform


- ► General-Purpose Graphics Processing Unit
- ► Massively parallel, throughput-oriented platform
- ► Can yield tremendous speedup for data-parallel programs

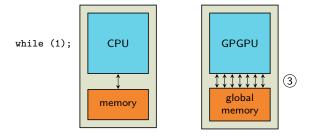

- ► General-Purpose Graphics Processing Unit
- ► Massively parallel, throughput-oriented platform
- ► Can yield tremendous speedup for data-parallel programs
- ► Comparison between CPUs and GPGPUs:


► Programmed using C dialect (here assuming CUDA C)

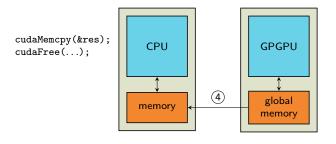
- ► Programmed using C dialect (here assuming CUDA C)
- ► Treated as an accelerator



- ► Programmed using C dialect (here assuming CUDA C)
- ► Treated as an accelerator


Copy input data

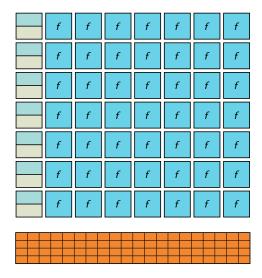
- ► Programmed using C dialect (here assuming CUDA C)
- ► Treated as an accelerator


Tell GPGPU to execute function f on input data, using N threads

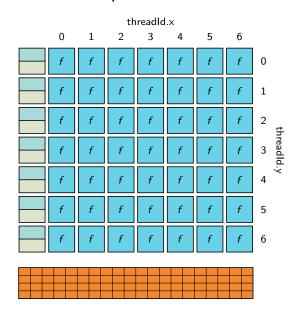
- ► Programmed using C dialect (here assuming CUDA C)
- ► Treated as an accelerator

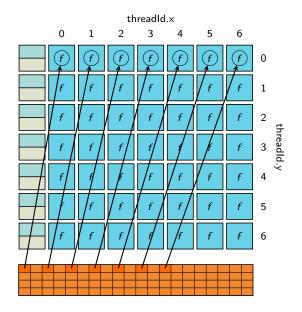

Wait until all threads have finished

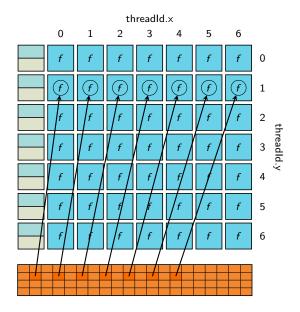
- ► Programmed using C dialect (here assuming CUDA C)
- ► Treated as an accelerator

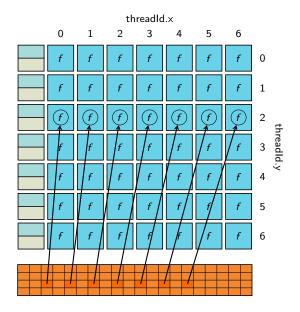


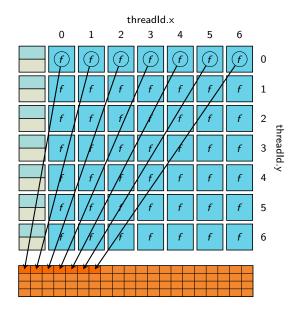
Copy result


Inside the GPGPU During Execution


Every Thread Executes the Same f


Each Thread Has a Unique Thread ID


f Uses Thread ID to Determine What Data to Read


f Uses Thread ID to Determine What Data to Read

f Uses Thread ID to Determine What Data to Read

f Uses Thread ID to Determine Where to Write Results

► Abundance of data parallelism to offset GPGPU overhead (due mainly for data copying)

- Abundance of data parallelism to offset GPGPU overhead (due mainly for data copying)
- ► High Computation-to-Global Memory Traffic Ratio

- ► Abundance of data parallelism to offset GPGPU overhead (due mainly for data copying)
- ► High Computation-to-Global Memory Traffic Ratio
 - ► Often requires efficient use of various resources (like *shared memory*)

- ► Abundance of data parallelism to offset GPGPU overhead (due mainly for data copying)
- ► High Computation-to-Global Memory Traffic Ratio
 - Often requires efficient use of various resources (like shared memory)
- ▶ No resource over-use

GPGPUs are Powerful, but Difficult to Program

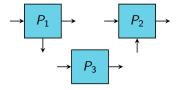
GPGPUs are Powerful, but Difficult to Program

► Complex data indexing schemes

GPGPUs are Powerful, but Difficult to Program

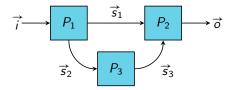
- ► Complex data indexing schemes
- ► Performance depends on many interconnected factors

► Formal System Design


- ► Formal System Design
- ► A formal modeling methodology

- ► Formal System Design
- ► A formal modeling methodology
 - ► Uses the theory of *Models of Computation (MoCs)*

- ► Formal System Design
- ▶ A formal modeling methodology
 - ► Uses the theory of *Models of Computation (MoCs)*
 - ► Captures behavior of heterogeneous embedded systems as ForSyDe models


What Is a ForSyDe Model?

What Is a ForSyDe Model?

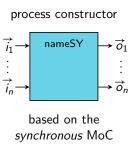
A ForSyDe model is a *concurrent network* of *processes* . . .

What Is a ForSyDe Model?

... that communicate via signals.

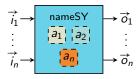
process constructor

name


A process constructor is a template . . .

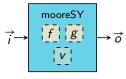
process constructor

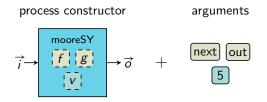
nameSY

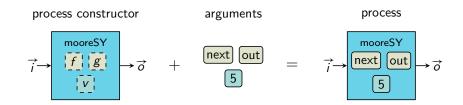

based on the synchronous MoC

... that is based on a specific model of computation, ...

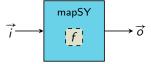
... has a number of declared input and output signals, ...

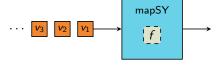

process constructor

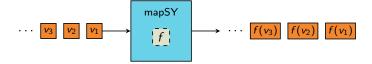


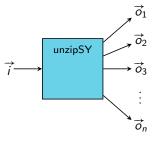

based on the synchronous MoC

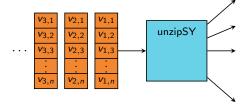
... and takes zero or more side effect-free arguments.

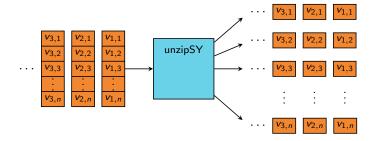

process constructor

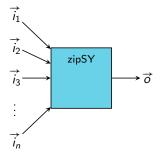


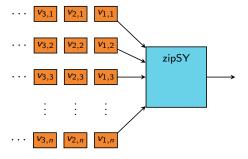

The MapSY Process Constructor

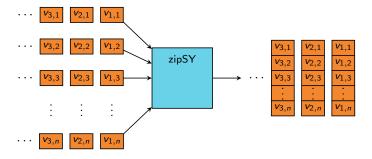

The MapSY Process Constructor


The MapSY Process Constructor

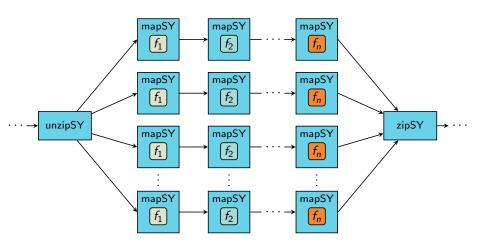

The UnzipSY Process Constructor


The UnzipSY Process Constructor

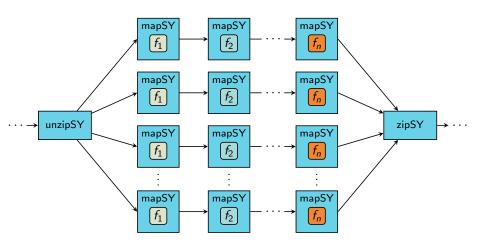

The UnzipSY Process Constructor


The ZipSY Process Constructor

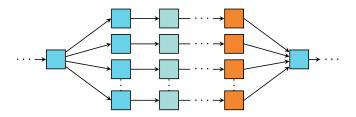
The ZipSY Process Constructor



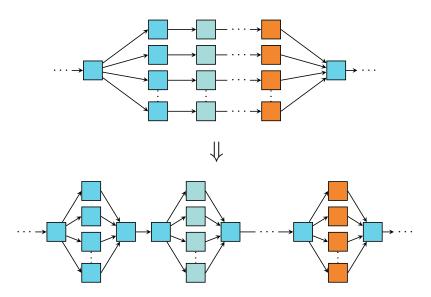
The ZipSY Process Constructor

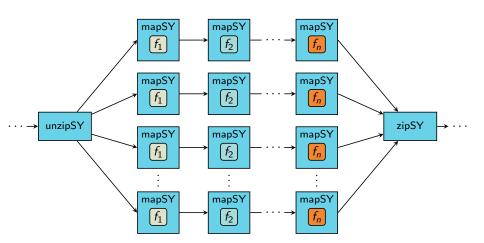

ForSyDe Models Suitable for GPGPUs?

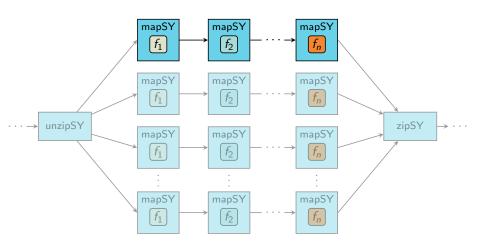
ForSyDe Models Suitable for GPGPUs?

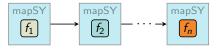


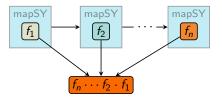
The split-map-merge pattern

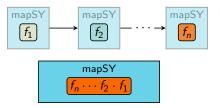

Want to Handle Only One Function

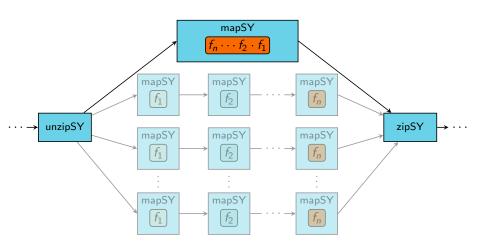


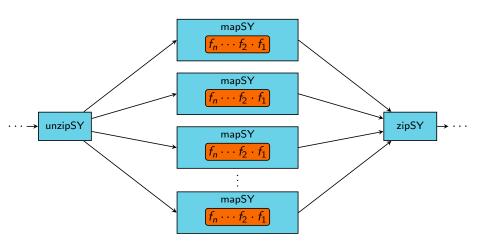

Method 1: Section Splitting

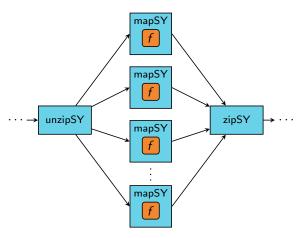


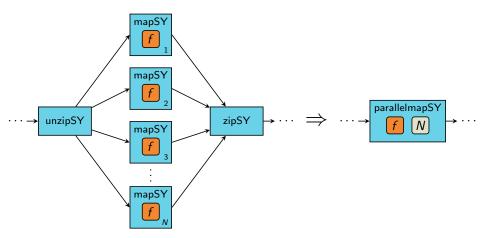

Method 1: Section Splitting








Method 2: Process Coalescing


Method 2: Process Coalescing

Fuse Zip-Map-Unzip Structures Into ParallelMaps

Fuse Zip-Map-Unzip Structures Into ParallelMaps

► ParallelmapSY processes:

- ► ParallelmapSY processes:
 - ► Choose C or CUDA C implementation

- ► ParallelmapSY processes:
 - ► Choose C or CUDA C implementation
 - ► Choose to use shared memory in CUDA C implementation

- ► ParallelmapSY processes:
 - ► Choose C or CUDA C implementation
 - ► Choose to use shared memory in CUDA C implementation
- ► Other processes:

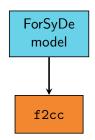
- ► ParallelmapSY processes:
 - ► Choose C or CUDA C implementation
 - ► Choose to use shared memory in CUDA C implementation
- ▶ Other processes:
 - ► Always C implementation

► ForSyDe-2-CUDA C

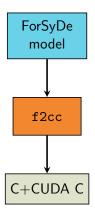
- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool

- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:

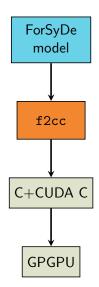
- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C

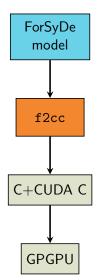

- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - 2. All processes are based on synchronous MoC

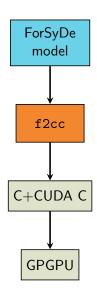
- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - 2. All processes are based on synchronous MoC
- ► Design flow:

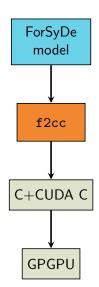

- ► ForSyDe-2-CUDA C
- Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model

ForSyDe model


- ► ForSyDe-2-CUDA C
- ▶ Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model


- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model
 - 3. Get implementation in C+CUDA C


- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - 2. All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model
 - 3. Get implementation in C+CUDA C
 - 4. Compile and execute on GPGPU


- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - 2. All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model
 - 3. Get implementation in C+CUDA C
 - 4. Compile and execute on GPGPU
- ► Other aspects in paper but not in talk:

- ► ForSyDe-2-CUDA C
- ► Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - 2. All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model
 - 3. Get implementation in C+CUDA C
 - 4. Compile and execute on GPGPU
- ► Other aspects in paper but not in talk:
 - ► Process scheduling

- ► ForSyDe-2-CUDA C
- ▶ Proof-of-concept synthesis tool
- ► Assumptions:
 - 1. All functions are written in C
 - All processes are based on synchronous MoC
- ► Design flow:
 - 1. Design ForSyDe model
 - 2. Run f2cc on ForSyDe model
 - 3. Get implementation in C+CUDA C
 - 4. Compile and execute on GPGPU
- ► Other aspects in paper but not in talk:
 - Process scheduling
 - ► Signal management

► Setup:

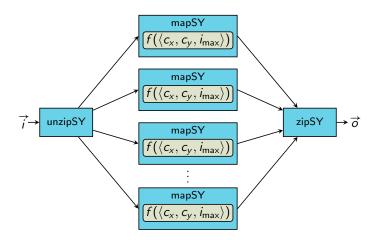
- ► Setup:
 - ► Tested f2cc on two ForSyDe models

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application

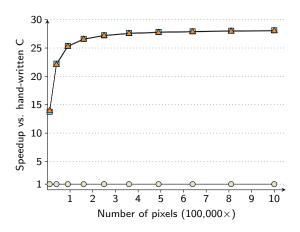
- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - ► Executed synthesized code on Intel i7 + GPGPU with 96 cores

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - ► Executed synthesized code on Intel i7 + GPGPU with 96 cores
 - Compared performance against hand-written C implementations

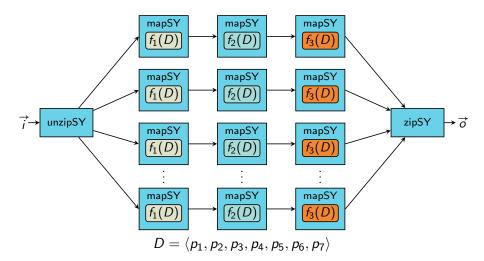

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - Executed synthesized code on Intel i7 + GPGPU with 96 cores
 - Compared performance against hand-written C implementations
 - ► ∽ 30× speedup is good

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - Executed synthesized code on Intel i7 + GPGPU with 96 cores
 - Compared performance against hand-written C implementations
 - ► ∽ 30× speedup is good
- ► Expected outcome:

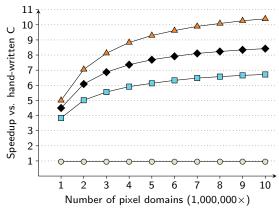

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - Executed synthesized code on Intel i7 + GPGPU with 96 cores
 - Compared performance against hand-written C implementations
 - ► ∽ 30× speedup is good
- Expected outcome:
 - ► Synthesized C to perform no worse

- ► Setup:
 - ► Tested f2cc on two ForSyDe models
 - ► Mandelbrot application
 - ► Industrial-scale image processing application
 - Executed synthesized code on Intel i7 + GPGPU with 96 cores
 - Compared performance against hand-written C implementations
 - ► ∽ 30× speedup is good
- ► Expected outcome:
 - ► Synthesized C to perform no worse
 - ► Synthesized CUDA C to perform better

ForSyDe Model of Mandelbrot Application



Achieve Expected Outcome for Mandelbrot Application



- Synthesized C
- Synthesized C + CUDA C (no shared memory)
- \triangle Synthesized C + CUDA C (using shared memory)

ForSyDe Model of Image Processing Application

Achieve Expected Outcome for Image Processing Application

- Synthesized C
- Synthesized C + CUDA C (section splitting, no shared memory)
- \triangle Synthesized C + CUDA C (process coalescing, no shared memory)
- ◆ Synthesized C + CUDA C (process coalescing, with shared memory)

► Mandelbrot more compute-intense than image proc. app.

- ► Mandelbrot more compute-intense than image proc. app.
 - $\Rightarrow \mathsf{more} \; \mathsf{speedup} \; \mathsf{for} \; \mathsf{Mandelbrot}$

- ► Mandelbrot more compute-intense than image proc. app.
 - \Rightarrow more speedup for Mandelbrot
- ► Section splitting leads to excess memory copying

- ► Mandelbrot more compute-intense than image proc. app.
 - ⇒ more speedup for Mandelbrot
- Section splitting leads to excess memory copying
 - ⇒ more speedup when using process coalescing

- ► Mandelbrot more compute-intense than image proc. app.
 - ⇒ more speedup for Mandelbrot
- ► Section splitting leads to excess memory copying
 - ⇒ more speedup when using process coalescing
- More shared memory per thread for image proc. app. than Mandelbrot

- ► Mandelbrot more compute-intense than image proc. app.
 - ⇒ more speedup for Mandelbrot
- Section splitting leads to excess memory copying
 - ⇒ more speedup when using process coalescing
- More shared memory per thread for image proc. app. than Mandelbrot
 - ⇒ over-use of shared memory

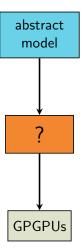
- ► Mandelbrot more compute-intense than image proc. app.
 - ⇒ more speedup for Mandelbrot
- Section splitting leads to excess memory copying
 - ⇒ more speedup when using process coalescing
- More shared memory per thread for image proc. app. than Mandelbrot
 - ⇒ over-use of shared memory
 - ⇒ less speedup than when not using shared memory

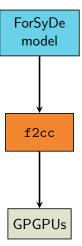
► Proof-of-concept prototype for split-map-merge pattern

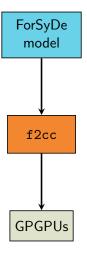
- ► Proof-of-concept prototype for split-map-merge pattern
 - ► Extend support for additional process constructors

- ► Proof-of-concept prototype for split-map-merge pattern
 - Extend support for additional process constructors
 - Extend support for additional patterns

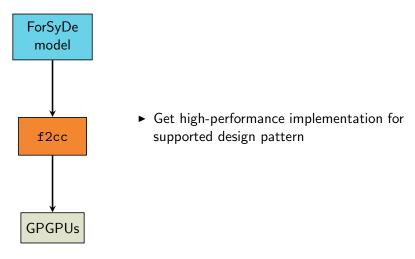
- ► Proof-of-concept prototype for split-map-merge pattern
 - ► Extend support for additional process constructors
 - Extend support for additional patterns
 - Extend support for additional MoCs

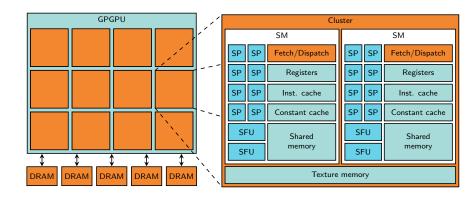

- ► Proof-of-concept prototype for split-map-merge pattern
 - Extend support for additional process constructors
 - Extend support for additional patterns
 - Extend support for additional MoCs
- Greedy evaluation always implement on GPGPU


- ► Proof-of-concept prototype for split-map-merge pattern
 - ► Extend support for additional process constructors
 - Extend support for additional patterns
 - Extend support for additional MoCs
- Greedy evaluation always implement on GPGPU
 - ► Experimental cost analysis


- ► Proof-of-concept prototype for split-map-merge pattern
 - ► Extend support for additional process constructors
 - Extend support for additional patterns
 - Extend support for additional MoCs
- Greedy evaluation always implement on GPGPU
 - ► Experimental cost analysis
 - ► Look into DSE (design space exploration)

- ► Proof-of-concept prototype for split-map-merge pattern
 - Extend support for additional process constructors
 - Extend support for additional patterns
 - Extend support for additional MoCs
- Greedy evaluation always implement on GPGPU
 - Experimental cost analysis
 - ► Look into DSE (design space exploration)
- ► Eager memory-copying scheme


- ► Proof-of-concept prototype for split-map-merge pattern
 - ► Extend support for additional process constructors
 - Extend support for additional patterns
 - ► Extend support for additional MoCs
- Greedy evaluation always implement on GPGPU
 - Experimental cost analysis
 - ► Look into DSE (design space exploration)
- ► Eager memory-copying scheme
 - Reduce overhead through lazy copying


► Get high-performance implementation for supported design pattern

f2cc available at:

https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

NVIDIA's GPGPU Architecture


```
<graphml>
  <graph id="test" edgedefault="directed">
    <node id="unzip"> ... </node>
    <node id="zip"> ... </node>
    <node id="map1">
      <data key="process_type">mapSY</data>
      <data key="procfun_arg">
        int f1(int x) \{ return x + 1; \}
      </data>
      <port name="in" /><port name="out" />
    </node>
    <node id="map6">
      <data key="process_type">mapSY</data>
      <data key="procfun_arg">
        int f2(int x) \{ return x * 2; \}
      </data>
      <port name="in" /><port name="out" />
    </node>
    <edge source="unzip" sourceport="out1" target="map1"</pre>
          targetport="in" />
    <edge source="map1" sourceport="out" target="map4"</pre>
          targetport="in" />
  </graph>
</graphml>
```

Function Produced From Process Coalescing

```
__device__
int f12(int x) {
  int res_f1 = f1(x);
  int res_f2 = f2(res_f1);
  return res_f2;
}
```

Kernel Function Produced (Without Shared Memory)

```
__global__
void f12_kernel(
  const int* input,
 int* output,
  int offset)
  unsigned int global_index =
    (blockIdx.x * blockDim.x + threadIdx.x) + offset;
  if (global_index < 3) {
    int input_index = global_index * 1;
    output[global_index] = f12(input[input_index]);
```

Kernel Function Produced (With Shared Memory)

```
__global__
void f12_kernel(
  const int* input,
  int* output,
  int offset)
  unsigned int global_index =
    (blockIdx.x * blockDim.x + threadIdx.x) + offset;
  extern __shared__ int input_cached[];
  if (global_index < 3) {
    int input_index = threadIdx.x * 1;
    int gi_index = global_index * 1;
    input_cached[input_index + 0] = input[gi_index + 0];
    output[global_index] = f12(input_cached[input_index]);
```

Produced Invoker Function (1 of 3)

```
void f12_invoker(const int* input, int* output) {
  int * device_input;
  int* device_output;
  struct cudaDeviceProp prop;
  cudaGetDeviceProperties(&prop, 0);
  int tlimit = prop.maxThreadsPerBlock *
               prop.multiProcessorCount;
  cudaMalloc((void**) &device_input, 3 * sizeof(int));
  cudaMalloc((void**) &device_output, 3 * sizeof(int));
  cudaMemcpy((void*) device_input,
             (void*) input,
             3 * sizeof(int),
             cudaMemcpyHostToDevice);
```

Produced Invoker Function (2 of 3)

```
if (prop.kernelExecTimeoutEnabled) {
  int num_t_left = 3;
  int offset = 0;
  while (num_t_left > 0) {
    int num t exec =
      num_t_left < tlimit ? num_t_left : tlimit;</pre>
    KernelConfig c = calculateBestKernelConfig(...);
    f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
      (device_input, device_output, offset);
    int num_t_exed = c.grid.x * c.threadBlock.x;
    num_t_left -= num_t_exed;
    offset += num_t_exed;
else {
  KernelConfig c = calculateBestKernelConfig(...);
  f12_kernel <<<c.grid, c.threadBlock, c.sharedMemory>>>
    (device_input, device_output, 0);
```

Produced Invoker Function (3 of 3)