
Modeling Universal Instruction
Selection

Gabriel Hjort Blindell1,2, Roberto Castañeda Lozano2,1,
Mats Carlsson2, and Christian Schulte1,2

1 School of ICT, KTH Royal Institute of Technology, Sweden
2 SICS Swedish Institute of Computer Science, Sweden

SweConsNet 2016, June 14

This research has been funded by LM Ericsson AB
and the Swedish Research Council (VR 621-2011-6229).

Inside a Typical Compiler

source
code frontend optimizer backend

assembly
code

register
allocator

instruction
selector

instruction
scheduler

2

Graph-based Instruction Selection
int f (int a) {

int b = a * 2;
int c = a * 4;
return b + c ;

}

ret

+

∗ ∗

a 2 a 4

matches

program graph
(data-flow graph)

mac

∗

+

pattern graph
(data-flow graph)

Task: Select matches such that
program graph is covered

3

State of the Art

Program graphs per basic block
Select instructions block-wise
(local instruction selection)
Select using greedy heuristics
Pattern graphs only capture data flow

4

Talk Overview

A motivating example
Novel program and instruction representations
Constraint model for universal instruction selection
Proof-of-concept experiments
Conclusions and future work

5

A MOTIVATING EXAMPLE

Program Example

Saturated vector addition:

int i = 0;
while (i < N) {

int c = A[i] + B[i];
if (MAX < c)

c = MAX;
C[i] = c ;
i ++;

}

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1:

bb2:

bb3:

bb4: bb5:

control-flow graph

7

Instruction Examples

satadd

add4

Difficult properties:
Incorporates control flow
Extends across multiple

blocks

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1:

bb2:

bb3:

bb4: bb5:

8

Instruction Examples

satadd

add4

Difficult properties:
Must move computations

across blocks (global code
motion)

May incur additional copy
overhead

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1:

bb2:

bb3:

bb4: bb5:

9

Actual Instructions

satadd
Common in DSPs
add4
Intel, ARM, TI, . . .

Architectures will only
become more complicated,
not less!

T

T F

F

i = 0

if i < N

t1 = i ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c = a + b
if MAX < c

c = MAX t4 = C + t1
store t4, c
i = i + 1

bb1:

bb2:

bb3:

bb4: bb5:

10

Universal Instruction Selection

Need an approach that:

Selects instructions for entire function
(global instruction selection)
Selects instructions for both computations and branching
Supports global code motion
Takes data-copying overhead into account

Prerequisites:
Representations that capture both data and control flow
An expressive methodology, such as CP

11

PROGRAM AND INSTRUCTION
REPRESENTATIONS

Program Representation (Based on SSA)
bb1

br

bb2

c.br end

bb3

c.br bb4

br

bb5

br

FT

T
F

F
T

T
F

control-flow graph

block

operation
ϕ

0

i2

∗

t1

4

+ +
A

>
N

B

t2 t3

ld ld

a b

+

c1

ϕ<
MAX

c3

st

t4

+
C

MAX

+
1

i3

SSA graph

datum

operation

definition edge

13

Instruction Representation

satadd:

entry

c.br if

br

end

T

F

+

x1

ϕ<
MAX MAX

x2

14

CONSTRAINT MODEL

Our Approach

transformer

transformer
matcher modeler solver

output
program

input
program

processor
instructions

program graph

pattern graphs

matches CP
model

16

Decision Variables

sel(m) ∈ {0, 1} Is a match m selected?
place(m) ∈ B In which block is a match m placed?
def(d) ∈ B In which block is a datum d defined

(made available)?
loc(d) ∈ L In which location is a datum d stored?
succ(b) ∈ B What is the block order?

17

Global Instruction Selection

Every operation o in the program graph must be
covered by exactly one selected match:

∑
m∈M s.t.

o∈covers(m)

sel(m) = 1

18

Global Code Motion

Every datum d must be produced before being used. . .

meaning
d must be defined such that d dominates every
match m that uses d:

def(d) ∈ dominates(place(m))

For each definition edge b ⋅ ⋅ ⋅ d:
def(d) = b

Remaining constraints:
(see paper for details)

19

Dominance

A block b dominates another block b′ if every control-
flow path from entry block to b′ goes through b

A block always dominates itself

Example:
e

b1

b2 b3

b4

dominates(b1) = {b1}

dominates(b2) = {b1,b2}

dominates(b3) = {b1,b3}

dominates(b4) = {b1,b4}

20

Global Code Motion

Every datum d must be produced before being used,
meaning

d must be defined such that d dominates every
match m that uses d:

def(d) ∈ dominates(place(m))

For each definition edge b ⋅ ⋅ ⋅ d:
def(d) = b

Remaining constraints:
(see paper for details)

21

Data Copying

For every selected match m that enforces a location
requirement on a datum d:

sel(m)⇒ loc(d) ∈ stores(m,d)

22

Copy Extension of Program Graph

v1

cp

v2

v

When locations for v1 and v2 can be the same,
select special null-copy pattern with zero cost
Otherwise select appropriate copy instruction

23

Fall-through Branching

All blocks must form a circuit:
circuit (∪b∈B{succ(b)})

For each selected branch instruction m that falls
through to block b:

sel(m)⇒ succ(place(m)) = b

24

Objective Function

Minimize execution time:

∑
b∈B

freq(b) × ∑
m∈M s.t.

place(m)=b

cycles(m)

where freq(⋅) is estimated execution frequency
(provided by the compiler)

25

Implied and Dominance Constraints

(see paper for details)

26

Branching Strategy

Eagerly cover non-copy operations
▸ Try sel(m) = 1 in non-increasing ∣ covers(m)∣ order

(mimics maximum munch [Cattell 1978])
Remaining decisions left to the solver

27

Limitations

Redundant loads of constants
▸ Impact: Significant
▸ Fix estimate: Easy

Cannot handle if-conversions (predicated instructions)
▸ Impact: None – significant (depends on hardware)
▸ Fix estimate: Difficult

(not even handle by state of the art)

28

EXPERIMENTS

Benchmarks
Input programs:

16 functions from MediaBench [Lee et al. 1997]
▸ More than 5 LLVM IR instructions
▸ No function calls or memory instructions
▸ Compiled and optimized using LLVM 3.4 (–O3 flag)
▸ Size of corresponding program graphs: 34–203 nodes

Target machines:
MIPS32

1. Standard instructions
2. Expected outcome: No significant speedup over LLVM

FancyTM MIPS32
1. MIPS32 extended with SIMD instructions
2. Expected outcome: Some speedup over LLVM

30

Setup

Model implemented in MiniZinc
Solved with CPX 1.0.2

▸ Using Linux, Intel Core i7 2.70 MHz, 4 GB memory

31

MIPS32: Estimated Speedup over LLVM

−20%

−10%

0%

10%

20%

30%

reconstruct

gsm_L_sub

gsm_mult_r

gsm_asr

gsm_add

jpeg_quality_sc.

gsm_L_asr

gsm_L_add

gsm_L_asl

gsm_mult

gsm_asl

ulaw2linear

gsm_abs

jround_up

gsm_sub

alaw2linear

All functions solved to optimality
Runtimes: 0.3–83.2 seconds (median 10.5 seconds)
Geometric mean speedup: 1.4%
Better cases: due to global code motion
Worse cases: due to constant reloading

32

FancyTM MIPS32: Additional Speedup

0%

10%

20%

30%

reconstruct

gsm_L_sub

gsm_mult_r

gsm_asr

gsm_add

jpeg_quality_sc.

gsm_L_asr

gsm_L_add

gsm_L_asl

gsm_mult

gsm_asl

ulaw2linear

gsm_abs

jround_up

gsm_sub

alaw2linear

All functions solved to optimality
Runtimes: 0.3–146.8 seconds (median 10.5 seconds)
Geometric mean speedup: 3%
Observation: SIMDs not used in “obvious” cases
because that would actually degrade code quality

33

CONCLUSIONS AND
FUTURE WORK

Contributions
Due to limitations of state-of-the-art approaches, we have:

Introduced novel, universal representations
▸ Captures both data and control flow

Designed constraint model for universal instruction
selection

▸ Implements global instruction selection
▸ Selects instructions for both computations and branching
▸ Supports global code motion
▸ Takes data-copying overhead into account

Conducted proof-of-concept experiments
Demonstrate that our approach:

▸ Handles small and medium-size input programs
▸ Yields results comparable with LLVM
▸ Supports sophisticated hardware (such as

SIMD instructions)
35

Future Work

Address current model limitations
Experiment with larger input programs and real
hardware (such as Intel X86, ARM, Hexagon)
Integrate with existing constraint model for global
register allocation and instruction scheduling
[Castañeda Lozano et al. 2014]

36

EXTRA MATERIAL

Related Work

Instruction selection:
Using tree-based program and pattern graphs

▸ [Glanville & Graham 1978], [Pelegrı́-Llopart et al. 1988], [Aho et al. 1989]
▸ Linear time, most guarantee optimality

Extensions to DAG-based program graphs
▸ [Ertl 1999], [Ertl et al. 2006], [Koes & Goldstein 2008]
▸ Linear time, non-optimal

Using IP and CP
▸ [Gebotys 1997], [Bednarski & Kessler 2006], [Wilson et al. 1994]
▸ [Bashford & Leupers 1999], [Martin et al. 2009], [Floch et al. 2010]
▸ Restricted to pattern trees/DAGs

38

Static Single Assignment (SSA) Form

A compiler standard
[Cytron et al. 1991]
Each variable must be
defined only once
(fixed by renaming)
Use ϕ-functions to
track renaming

T

T F

F

i1 = 0

i2 = ϕ(i1, i3)
if i2 < N

t1 = i2 ∗ 4
t2 = A + t1; t3 = B + t1
a = load t2; b = load t3
c1 = a + b
if MAX < c1

c2 = MAX c3 = ϕ(c1, c2)
t4 = C + t1
store t4, c3
i3 = i2 + 1

bb1:
bb2:

bb3:

bb4: bb5:

39

Global Code Motion

Every non-selected match m is placed in the
bnull block:

sel(m)⇔ place(m) ≠ bnull

Every selected match m that incorporates control flow
must not move control operations elsewhere in the
program graph:

sel(m)⇒ place(m) = entry(m)

Every datum m defined by a selected match m must
be defined in either the block wherein m is placed, or
in a block spanned by m:

sel(m)⇒ def(d) ∈ {place(m)} ∪ spans(m)

40

Objective Function

Minimize execution time:

∑
b∈B

freq(b) × ∑
m∈M s.t.

place(m)=b

cycles(m)

where freq(⋅) is estimated execution frequency
(provided by the compiler)

Minimize code size:

∑
m∈M s.t.

sel(m)=1

size(m)

41

Implied Constraints
Every datum d must be defined by exactly one
selected match m:

∑
m∈M s.t.

d∈defines(m)

sel(m) = 1

If a datum d is defined in some block b, then some
selected match m must either be placed in b, or b be
spanned by m:

def(d) = b⇒ sel(m) ∧ b ∈ {place(m)} ∪ spans(m)

If two matches m1 and m2 impose conflicting location
requirements on the same datum, select at most one
of them:

sel(m1) + sel(m2) ≤ 1

42

Dominance Constraints

Remove symmetric solutions due to equivalent
locations:

▸ Identify subsets S of values such that any solution
with loc(d) = v and v ∈ S can be replaced by an
equivalent solution with loc(d) = max(S), for any
d ∈ D.

43

